Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

Diagenetic signals from ancient human remains - bioarchaeological applications

Krzysztof Szostek / Beata Stepańczak / Anita Szczepanek / Małgorzata Kępa / Henryk Głąb / Paweł Jarosz / Piotr Włodarczak / Krzysztof Tunia / Jacek Pawlyta
  • Department of Radioisotopes, Institute of Physics, Silesian University of Technology, Gliwice, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Czesława Paluszkiewicz
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz Tylko
  • Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-07-04 | DOI: https://doi.org/10.2478/v10002-011-0009-4

Diagenetic signals from ancient human remains - bioarchaeological applications

This preliminary study examines the potential effects of diagenetic processes on the oxygen-isotope ratios of bone and tooth phosphate (δ18O) from skeletal material of individuals representing the Corded Ware Culture (2500-2400 BC) discovered in Malżyce (Southern Poland). Intra-individual variability of Ca/P, CI, C/P, collagen content (%) and oxygen isotopes was observed through analysis of enamel, dentin and postcranial bones. Using a variety of analytical techniques, it was found that, despite the lack of differences in soil acidity, not all the parts of a skeleton on a given site had been equally exposed to diagenetic post mortem changes. In a few cases, qualitative changes in the FTIR spectrum of analysed bones were observed. The data suggest that apart from quantitative analyses, i.e., the calculation of Ca/P, CI, C/P and collagen content, qualitative analyses such as examination of the absorbance line are recommended. The degree to which a sample is, contaminated on the basis of any additional, non-biogenic peaks, deemed to be contaminated should also be specified.

Keywords: diagenesis; Neolithic; oxygen isotopes; FTIR; EDS; bioarchaeology

  • Ambrose, S. H. (1993). Isotopic analysis of paleodiets: Methodological and interpretive consideration. In M. K. Sandford (Ed.), Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology (pp. 50-130). Landorne PA: Gordon and Breach.Google Scholar

  • Ambrose, S. H. & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. B. Lambert & G. Grupe (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level (pp. 1-37). Berlin: Springer-Verlag.Google Scholar

  • Ballasse, M. (2003). Potential biases in sampling design and interpretation of intra-tooth isotope analysis. International Journal of Osteoarchaeology 13(1-2), 3-10. DOI: 10.1002/oa.656.CrossrefGoogle Scholar

  • Bell, L. S., Skinner, M. F., & Jones, S. J. (1996). The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International 82(2), 129-140. DOI: 10.1016/0379-0738(96)01984-6.PubMedCrossrefGoogle Scholar

  • Bocherens, H. (1997). Isotopic biogeochemistry as a marker of Neandertal diet. Anthropologischer Anzeiger 55(2), 101-120.Google Scholar

  • Brady, A. L., White, Ch. D., Longstaffe, F. J., & Southam, G. (2008). Investigating intra-bone isotopic variations in biopatite using IR-laser ablation and micromilling: Implications for identifying diagenesis. Palaeogeography, Palaeoclimatology, Palaeoecology 266(3-4), 190-199. DOI:10.1016/j.palaeo.2008.03.031.Web of ScienceCrossrefGoogle Scholar

  • Buckberry, J. (2000). Missing, presumed buried? Bone diagenesis and the under-representation of Anglo-Saxon children. Assemblage 5, 1-14.Google Scholar

  • Child, A. M. (1995). Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science 22(2), 165-174. DOI:10.1006/jasc.1995.0018.CrossrefGoogle Scholar

  • Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., Wess, T. J., Csapò, J., Millard, A. R., & Turner-Walker, G. (2002). The survival of organic matter in bone: a review. Archaeometry 44(3), 383-394. DOI: 10.1111/1475-4754.t01-1-00071.CrossrefGoogle Scholar

  • Dupras, T. L., & Schwarcz, H. P. (2001). Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28(11), 1199-1208. DOI: 10.1006/jasc.2001.0640.CrossrefGoogle Scholar

  • Evans, J. A., Chenery, C. A., & Fitzpatrick, A., P. (2006). Bronze age childhood migration of individuals near Stonehenge, revealed by strontium and oxygen isotope tooth enamel analysis. Archaeometry 48(2), 309-321. DOI: 10.1111/j.1475-4754.2006.00258.x.CrossrefGoogle Scholar

  • Fabig, A., & Herrmann, B. (2002) Trace elements in buried human bones: intra - population varability of Sr/Ca and Ba/Ca ratios - diet or diagenesis? Naturwissenschaften 89(3): 115-119. DOI: 10.1007/s00114-001-0294-7.CrossrefGoogle Scholar

  • Goldstein, J. I., & Yakowitz, H. (1975). Practical Scanning Electron Microscopy. New York: Plenum Press.Google Scholar

  • Grupe, G., Dreses-Werringloer, U., & Parsche, F. (1993). Initial stages of bone decomposition: Causes and consequences. In J. B. Lambert & G. Grupe (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level (pp. 257-274). Berlin: Springer-Verlag.Google Scholar

  • Grupe, G., Piepenbrink, H., & Schoeninger, M. J. (1989). Note on microbial influence on stable carbon and nitrogen isotopes in bone. Applied Geochemistry 4, 299.CrossrefGoogle Scholar

  • Hedges, R. E. M. (2002). Bone diagenesis: an overview of processes. Archaeometry 44(3), 319-328. DOI: 10.1111/1475-4754.00064.CrossrefGoogle Scholar

  • Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J., & Kars, H. (2004). Characterization of microbial attack on archaeological bone. Journal of Archaeological Science 31(1), 87-95. DOI: 10.1016/j.jas.2003.07.007.CrossrefGoogle Scholar

  • Jarosz, P., Tunia, K., & Włodarczak, P. (2009). Burial mound No. 2 in Malżyce, the district of Kazimierza Wielka / Grobowiec nr 2 w Malżycach, pow. Kazimierza Wielka. Sprawozdania Archeologiczne 61, 175-231.Google Scholar

  • Jørkov, M. L. S., Heinemeier, J., & Lynnerup, N. (2007). Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. Journal of Archaeological Science 34(11), 1824-1829. DOI: 10.1016/j.jas.2006.12.020.Web of ScienceCrossrefGoogle Scholar

  • Kohn, M. J., Schoeninger, M. J., & Barker, W. W. (1999). Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63(18), 2737-2747. DOI: 10.1016/S0016-7037(99)00208-2.CrossrefGoogle Scholar

  • Kondracki, J. (2000). Geografia regionalna Polski, Warszawa: PWN.Google Scholar

  • Krueger, H. W. (1991). Exchange of carbon with biological apatite. Journal of Archaeological Science 18(3), 355-361. DOI: 10.1016/0305-4403(91)90071-V.CrossrefGoogle Scholar

  • LaPorte, D. F., Holmden C., Patterson W. P., Prokopiuk T., & Eglington B. M. (2008) Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS. Journal of Mass Spectrometry 44(6), 879-890. DOI: 10.1002/jms.1549.Web of ScienceCrossrefGoogle Scholar

  • Lécuyer, C., Fourel, F., Martineau, F., Amiot, R., Bernard, A., Daux, V., Escarguel, G., & Morrison, J. (2007). High-precision determination of 18O/16O ratios of silver phosphate by EA-pyrolysis-IRMS continuous flow technique. Journal of Mass Spectrometry 42(1), 36-41. DOI: 10.1002/jms.1130.CrossrefWeb of ScienceGoogle Scholar

  • Lécuyer, C., Grandjean, P., & Emig, C. (1996). Determination of oxygen isotope fractionation between water and phosphate from living lingulids: Potential application to palaeoenvironmental studies. Palaeogeography, Palaeoclimatology, Palaeoecology 126(1-2), 101-108. DOI: 10.1016/S0031-0182(96)00073-9.CrossrefGoogle Scholar

  • Lee-Thorp, J. (2002). Two decades of progress towards understanding fossilization processes and isotopic signals in calcified tissue minerals. Archaeometry 44(3), 435-446. DOI: 10.1111/1475-4754.t01-1-00076.CrossrefGoogle Scholar

  • Lee-Thorp, J., & Sponheimer, M. (2006). Contributions of biogeochemistry to understanding Hominin dietary ecology. Yearbook of Physical Anthropology 131(43), 131-148. DOI: 10.1002/ajpa.20519.Web of ScienceCrossrefGoogle Scholar

  • Lee-Thorp, J. A., & van der Merwe, N. J. (1991). Aspects of the chemistry of modern and fossil biological apatite. Journal of Archaeological Science 18(3), 343-354. DOI: 10.1016/0305-4403(91)90070-6.CrossrefGoogle Scholar

  • Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research. Geochimica et Cosmochimica Acta 48(2), 385-390. DOI: 10.1016/0016-7037(84)90259-X.CrossrefGoogle Scholar

  • Luz, B., Kolodny, Y., & Horowitz, M. (1984). Fractionation of oxygen isotopes between mammalian bonephosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48(8), 1689-1693. DOI: 10.1016/0016-7037(84)90338-7.CrossrefGoogle Scholar

  • Nielsen-Marsh, Ch. M., & Hedges, R. E. M. (2000). Patterns of diagenesis in bone I: The effects of site environments. Journal of Archaeological Science 27(12), 1139-1150. DOI: 10.1006/jasc.1999.0537.CrossrefWeb of ScienceGoogle Scholar

  • O'Neil, J. R., Roe, L. J., Reinhard, E., & Blake, R. E. (1994). A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth Sciences 43, 203-212.Google Scholar

  • Pearsal, D. M. (2008). Paleoethnobotany. A Handbook of Procedures. Cornwall: MPG Books.Google Scholar

  • Reitsema, L. J, Crews D. E., & Polcyn M. (2010). Preliminary evidence for medieval Polish diet from carbon and nitrogen stable isotopes. Journal of Archaeological Science 37(7), 1413-1423. DOI: 10.1016/j.jas.2010.01.001.Web of ScienceCrossrefGoogle Scholar

  • Schoeninger, M. J., & Moore, K. (1992). Bone stable isotope studies in archaeology. Journal of World Prehistory 6(2), 247-295. DOI: 10.1007/BF00975551.CrossrefGoogle Scholar

  • Sponheimer, M., & Lee-Thorp, J. A. (2006). Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements. Geochimica et Cosmochimica Acta 70(7), 1644-1654. DOI: 10.1016/j.gca.2005.12.022.CrossrefGoogle Scholar

  • Stephan, E. (1997). Patterns of chemical change in fossil bones and various states of bone preservation associated with soil conditions. Anthropozoologica 25, 173-180.Google Scholar

  • Szczepanek A. (2009). The anthropological analysis of skeletons from tomb no. 2 in Malżyce. Sprawozdania Archeologiczne 61, 233-242.Google Scholar

  • Thompson, T. J. U., Gauthier, M., & Islam, M. (2009). The application of a new method of Fourier Transform Spectroscopy to the analysis of burned bone. Journal of Archaeological Science 36(3), 910-914. DOI: 10.1016/j.jas.2008.11.013.CrossrefGoogle Scholar

  • Vennemann, T. W., Fricke, H. C., Blake, R. E., O'Neil, J. R., & Colman, A. (2002). Oxygen isotope analysis of phosphates: A comparison of techniques for analysis of Ag3PO4. Chemical Geology 185(3-4), 321-336. DOI: 10.1016/S0009-2541(01)00413-2.CrossrefGoogle Scholar

  • Weiner, S., & Bar-Yosef, O. (1990). States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17(2), 187-196. DOI: 10.1016/0305-4403(90)90058-D.CrossrefGoogle Scholar

  • White, T. D., & Folkens, P. A. (2005). The human bone manual. Elsevier Accademic Press.Google Scholar

  • White, C., Longstaffe, F. J., & Law, K. R. (2004). Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. Journal of Archaeological Science 31(2), 233-250. DOI: 10.1016/j.jas.2003.08.007.CrossrefGoogle Scholar

  • White, C. D., Spence, M. W., Stuart-Williams, Q., & Schwacz, H. P. (1998). Oxygen isotopes and the identification of geographical origins: the Valley of Oaxaca versus the Valley of Mexico. Journal of Archaeological Science 25(7), 643-655. DOI: 10.1006/jasc.1997.0259.CrossrefGoogle Scholar

  • Włodarczak, P. (2006). Kultura ceramiki sznurowej na Wyżynie Małopolskiej. Kraków.Google Scholar

  • Wright, L. E., & Schwarcz, H. P. (1996). Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: Paleodietary Implications. Journal of Archaeological Science 23(6), 933-944. DOI: 10.1006/jasc.1996.0087.CrossrefGoogle Scholar

  • Wright, L. E., & Schwarcz, H. P. (1999). Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine: infants diets at Kaminaljuyú. Journal of Archaeological Science 26(9), 1159-1170. DOI: 10.1006/jasc.1998.0351.CrossrefGoogle Scholar

  • Yoshino, M., Kimijima, T., Miyasaka, S., Sato, H., & Seta, S. (1991). Microscopical study on time science death in skeletal remains. Forensic Science International 49(2), 143-158. DOI: 10.1016/0379-0738(91)90074-SCrossrefPubMedGoogle Scholar

  • Zazzo, A., Lécuyer, Ch., & Mariotti, A. (2004). Experimentally controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially mediated conditions. Geochimica et Cosmochimica Acta 68(1), 1-12. DOI: 10.1016/S0016-7037(03)00278-3.CrossrefGoogle Scholar

About the article


Published Online: 2012-07-04

Published in Print: 2011-01-01


Citation Information: Mineralogia, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-011-0009-4.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
N. Miliszkiewicz, S. Walas, A. Tobiasz, M. Kołodziej, and K. Szostek
Analytical Letters, 2017, Volume 50, Number 8, Page 1345
[2]
A. Lisowska-Gaczorek, S. Kozieł, B. Cienkosz-Stepańczak, K. Mądrzyk, J. Pawlyta, S. Gronkiewicz, M. Wołoszyn, and K. Szostek
HOMO - Journal of Comparative Human Biology, 2016, Volume 67, Number 4, Page 313
[3]
G. TYLKO
Journal of Microscopy, 2016, Volume 261, Number 2, Page 185
[4]
K. Szostek, E. Haduch, B. Stepańczak, J. Kruk, A. Szczepanek, J. Pawlyta, H. Głąb, and S. Milisauskas
HOMO - Journal of Comparative Human Biology, 2014, Volume 65, Number 2, Page 115

Comments (0)

Please log in or register to comment.
Log in