Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

Note on the stable isotope values of vein calcite in the El-Seboah peralkaline granite (SW Egypt)

Kamaleldin Hassan
Published Online: 2012-07-04 | DOI: https://doi.org/10.2478/v10002-011-0010-y

Note on the stable isotope values of vein calcite in the El-Seboah peralkaline granite (SW Egypt)

Stable isotope data for carbon (δ13C) and oxygen (δ18O) are used to constrain the environments of calcite formation in two veins in the El-Seboah peralkaline granite in south-western Egypt. Vein I with calcite-magnetite-goethite-hematite-quartz, and vein II with calcite-magnetite-goethite-kaolinite-hematite-quartz are texturally distinct. The calcite of each vein has characteristic δ13C- and δ18O-values: + 0.32 and -7.28‰ for vein I and + 1.16 and - 1.21‰ for vein II, respectively. The observed differences between the δ13C values of the two veins indicate that they represent two separate systems of primary dissolved inorganic carbon formed at or near equilibrium with atmospheric CO2. The δ18O values, on the other hand, indicate calcite deposition from meteoric waters which were fresh for vein I and brackish for vein II.

Keywords: δ13C; δ18O; carbonate-hosting veins; peralkaline granite; Egypt

  • Al-Gamal, S. A. (1997). Hydrology of overland flow at Halaylb and Shelatin watersheds, Eastern Desert, Egypt. Turkish Journal of Engineering and Environmental Sciences, 21, 295-304.Google Scholar

  • Clayton, C. J. (1994). Microbial and organic processes. In A. Parker & B. W. Sellwood (Eds), Quantitative diagenesis: Recent developments and applications to reservoir geology (pp.125-160). Kluwer Academic Publishers.Google Scholar

  • Clayton, R. N., & Degens, E. T. (1959). Use of carbon isotope analyses of carbonates for differentiating freshwater and marine sediments. American Association of Petroleum Geologists Bulletin, 43(4), 890-897.Google Scholar

  • Craig, H. (1953). The geochemistry of stable carbon isotopes. Geochimica Cosmochimica Acta, 3(2-3), 53-92.CrossrefGoogle Scholar

  • Craig, H., & Gordon L. I. (1965). Deuterium and oxygen 18 variations in the ocean and the marine atmosphere In E. Tongiorgi (Ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures (pp. 9-130). Pisa: Consiglio Nationale delle Ricerche, Laboratorio di Geologia Nucleare.Google Scholar

  • Drake, H., & Tullborg, E.-L. (2009). Paleohydrogeological events recorded by stable isotopes, fluid inclusions and trace elements in fracture minerals in crystalline rock, Simpevarp area, SE Sweden. Applied Geochemistry, 24, 715-732. DOI: 10.1016/j.apgeochem.2008.12.026.CrossrefWeb of ScienceGoogle Scholar

  • Goldsmith, J. R., Graf, D. L. & Heard, H. C. (1961). Lattice constants of the calcium-magnesium carbonates. American Mineralogist, 46, 453-457.Google Scholar

  • Hassan, K. M. (2005). Geochemical assessment of radioactive lava pockets in El-Seboah granite, Toshki area, south Western Desert, Egypt. Annals of the Geological Survey of Egypt, 28, 195-204.Google Scholar

  • Hassan, K. M. (2006). The stable isotopes of modern land snail shell from Sinn El-Kedab plateau, south west Aswan, Egypt. Isotope and Radiation Research, 38, 107-116.Google Scholar

  • Hassan, K. M. (2009). Characterization of granites by 57Fe Mössbauer spectroscopy. Mineralogia, 40(1-4), 95-106. DOI: 10.2478/v10002-009-0008-x.CrossrefGoogle Scholar

  • Hassan, K. M. (2010). Valences and site characteristics of iron in radioactive magmatic veins (Egypt): A Mössbauer and chemical study. Mineralogia, 41(1-2), 23-33. DOI: 10.2478/v10002-010-0003-2.CrossrefGoogle Scholar

  • Hassan, K. M. (2012). Fossil-spring tufa deposits capping a carbonate plateaux in the Dungul region (Egypt): A Stable Isotope and Geochemical Study. Submitted to Central Europe Journal of Geosciences.Google Scholar

  • List, F. K., El-Gaby, S., & Tehrani, R. (1989). The basement rocks in the Eastern and Western Deserts and Sinai. In M. Hermina, E., Klitzsch & S. List (Eds), Stratigraphic Lexicon and explanatory note to the geologic map of Egypt 1:500000 (pp. 33-56). Cairo, Egypt: Egyptian General Petroleum Corporation.Google Scholar

  • Kontak, D. J., & Kerrich, R. (1997). An isotopic (C, O, Sr) study of vein gold deposits in the Meguma Terrane, Nova Scotia; implication for source reservoirs. Economic Geology 92(2), 161-180. DOI: 10.2113/gsecongeo.92.2.161.CrossrefGoogle Scholar

  • Larson, S. Å., & Tullborg, E-L. (1984). Stable isotopes of fissure-filling calcite from Finnsjön, Uppland, Sweden. Lithos, 17, 117-125. DOI: 10.1016/0024-4937(84)90012-4.CrossrefGoogle Scholar

  • Negga, H. S., Sheppard, S. M. F., Rosenbaum, J. M., & Cuney, M. (1986). Late Hercynian U-vein mineralization in the Alps: fluid inclusion and C, O, H isotopic evidence for mixing between two externally derived fluids. Contributions to Mineralogy and Petrology, 93, 179-186.Google Scholar

  • Ripley, E. M., & Taib, N. I. (1989). Carbon isotopic studies of metasedimentary and igneous rocks at the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota, U. S. A. Chemical Geology, 73(4), 319-342. DOI: 10.1016/0168-9622(89)90025-0.CrossrefGoogle Scholar

  • Said, R. (1969). Pleistocene Geology of Dungul Region, southern Libyan Desert. In J. J. Hester & P. M. Hobler (Eds), Settlement patterns in the Libyan Desert (pp. 7-18). University of Utah Anthropological Papers, 92.Google Scholar

  • Sandström, B., & Tullborg, E-L. (2009). Episodic fluid migration in the Fennoscandian Shield recorded by stable isotopes, rare earth elements and fluid inclusions in fracture minerals at Forsmark, Sweden. Chemical Geology, 266(3-4), 126-142. DOI: 10.1016/j.chemgeo.2009.04.019.Web of ScienceCrossrefGoogle Scholar

  • Shemesh, A., Ron, H., Erel, Y., Kolodny, Y., & Nur, A. (1992). Isotopic composition of vein calcite and its fluid inclusions: Implication to paleohydrological systems, tectonic events and vein formation processes. Chemical Geology, 94(4), 307-314. DOI: 10.1016/S0009-2541(10)80032-4.CrossrefGoogle Scholar

  • Sultan, M, Sturchio, N., Hassan, F. A., Hamdan, M. A.R, Mahmood, A., El Alfy, Z., & Stein, T. (1998). New constraints on the Quaternary paleoclimate of North Africa. Proceedings of the Egyptian Geological Survey Centennial Conference, November 19-22, 1996 (pp. 809-820). Cairo, Egypt.Google Scholar

  • Truesdell, A. H., & Hulston, J. R. (1980). Isotopic evidence on environments of geothermal systems. In P. Fritz, & J. C. Fontes (Eds.), Handbook of Environmental Isotope Geochemistry (pp.179-219). Amsterdam: Elsevier.Google Scholar

  • Tullborg, E.-L. (1989). The influence of recharge water on fissure-filling minerals - A study from Klipperås, southern Sweden. Chemical Geology, 76, 309-320. DOI: 10.1016/0009-2541(89)90099-5.CrossrefGoogle Scholar

  • Valero-Garcés, B. L., Delgado-Huertas, A., Ratto, N., & Navas, A. (1999). Large 13C enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina. Earth and Planetary Science Letters, 171(2), 253-266. DOI: 10.1016/S0012-821X(99)00150-8.CrossrefGoogle Scholar

About the article


Published Online: 2012-07-04

Published in Print: 2011-01-01


Citation Information: Mineralogia, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-011-0010-y.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in