Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
See all formats and pricing
More options …

An overview of the association between lamprophyric intrusions and rare-metal mineralization

Miroslav Štemprok / Thomas Seifert
  • Department of Mineralogy, Division of Economic Geology and Petrology, Brennhausgasse 14, TU Bergakademie Freiberg, D-09596 Freiberg, Federal Republic of Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-07-04 | DOI: https://doi.org/10.2478/v10002-011-0011-x

An overview of the association between lamprophyric intrusions and rare-metal mineralization

Granite-related rare metal districts in orogenic settings are occasionally associated with lamprophyre dikes. We recorded 63 occurrences of lamprophyres in bimodal dike suites of about 200 granite bodies related to rare metal deposits. Most lamprophyres occur in Paleozoic and Mesozoic metallogenic provinces in the northern hemisphere. Lamprophyres which are associated with rare metal deposits are calc-alkaline (kersantites, minettes, spessartites) or more rarely alkaline lamprophyres (camptonites, monchiquites) which occur in the roof zone of complex granitic bodies as pre-granitic, intra-granitic, intra-ore or post-ore dikes. Most lamprophyres are spatially associated with dominant felsic dikes and/or with mafic dikes represented by diorites or diabases. Diorites and lamprophyres occasionally exhibit transitional compositions from one to another. Lamprophyres share common geochemical characteristics of highly evolved granitoids such as enrichment in K and F, increased abundances of Li, Rb, and Cs and enrichment in some HFSE (e.g. Zr, U, Th, Mo, Sn, W). Lamprophyres in rare metal districts testify to accessibility of the upper crust to mantle products at the time of rare metal mineralization and possible influence of mantle melts or mantle-derived fluids in the differentiation of granitic melts in the lower crust.

Keywords: lamprophyres; rare metals; Sn; W; Mo; bimodal dikes; mantle metasomatism

  • Abdullaev, Kh.M. (1954). Genetical association of mineralization with granitoid intrusions. Moskva: Gosud. Nauchno. Tekh. Izd. Literatury po Geol. i Okhr. Nedr (in Russian).Google Scholar

  • Abdullaev, Kh.M. (1957). Dikes and mineralization. Moskva: Gosud. Nauchno. Tekh. Izd. Literatury po Geol. i Okhr. Nedr (in Russian).Google Scholar

  • Abushkevich, V. S. (2005). Geochemistry and petrology of the dike complex of the Khangilai rare-metal ore knot in Eastern Transbaikalia. Extended abstract of unpublished doctoral disseration, Sankt Petersburg State University, Sankt Petersburg, Russia (in Russian).Google Scholar

  • Abushkevich, V. S., & Syritso, L. F. (2007). Isotopic-geochemical model of the Li-F granite formation in the Khangilai ore knot in Eastern Transbaikalia. St. Petersburg: Izd. Nauka (in Russian).Google Scholar

  • Ačejev, B. N., & Harlass, E. (1968). Zum Problem der Alterstellung von Lamprophyren im westlichen Erzgebirge. Geologie, 17, 1178-1194.Google Scholar

  • Amato, J. M., Miller, L.E, Wright, J. E., & Mc Intosh, W. C. (2003). Dike swarms on Seward Penninsula, Alaska and their implications for the kinematics of Cretaceous extension in the Bering Strait region. Canadian Journal of Earth Sciences, 40(6), 865-886. DOI: 10.1139/e03-019.CrossrefGoogle Scholar

  • Ashley, P.M, Cook, N. D. J., Hill, R. L., & Kent, A. J. R. (1994). Shoshonitic lamprophyre dykes and their relation to mesothermal Au-Sb veins at Hillgrove, New South Wales, Australia. Lithos, 32(3-4), 249-272.CrossrefGoogle Scholar

  • Barabanov, V. F. (1961). Mineralogy of wolframite deposits of Eastern Transbaikalia. Bukuka-Belukha. Leningrad: Izd. Leningrad Universiteta (in Russian).Google Scholar

  • Baskina, V. A. (1980). Relation of tin, lead-zinc and boron deposits of the Sikhote-Alin range to cratonal volcanic association. Proceedings of the 5th IAGOD Symposium, vol. 1 (pp. 225-245), Stuttgart: Schweitzerbartsche Verlagsbuchhandlung.Google Scholar

  • Baumann, L., & Gorny, S. (1964): Neue tektonische und petrographische Untersuchungsergebnisse in der Zinnlagerstätte Tannenberg-Mühlleiten. Freiberger Forschungshefte, C 181, 89-117.Google Scholar

  • Baumann, L., Kuschka, E., & Seifert, Th. (2000). Lagerstätten des Erzgebirges. Stuttgart, New York: Enke in Georg Thieme Verlag.Google Scholar

  • Bea, F., Montero, P., & Molina, J. F. (1999). Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: A model for the generation of Variscan batholiths in Iberia. Journal of Geology, 107(4), 399-419. DOI: 10.1086/314356.CrossrefGoogle Scholar

  • Beskin, S. M., Larin, V. N., & Marin, Yu.B. (1979). Rare-metal granite formations. Leningrad: Izd. Nedra (in Russian).Google Scholar

  • Beus, A. A., Severov, E. A., & Sitnin, A. A. (1962). Albitized and greisenized granites (apogranites). Moskva: Izd. Nauka (in Russian).Google Scholar

  • Bolduan, H., & Hoffmann, M. (1963). Geologie und Erkundugsergebnisse der Zinnerzlagerstätte "Vierung" bei Ehrenfriedersdorf. Freiberger Forschungshefte, C 167, 65 - 83.Google Scholar

  • Bookstrom, A. A., Carten, R. B., Shannon, J. R., & Smith, R. P. (1988). Origins of bimodal leucogranite-lamprophyre suites, Climax and Red Mountain porphyry molybdenum systems, Colorado: petrological and strontium isotope evidence. Colorado School of Mines Quaterly, 83, 1-22.Google Scholar

  • Burnol, L., Autran, A., Bonnici, J. P., & Geffroy, J. (1974). Acid granites and associated mineralization in the north-western part of the French Central Massif. Excursion guide book C, IGCP No. 26, Metallization Associated with Acid Magmatism (pp. 1-205). Karlovy Vary, Czechoslovakia, Paris, France: BRGM.Google Scholar

  • Cai, Minghai, He, Longqing, Liu, Guoqing, Wu, Decheng, & Huang, Huimin (2006). SHRIMP zircon U-Pb dating of the intrusive rocks in the Dachang tin-polymetallic ore field, Guanxi and their geological significance. Geological Review, 52, 409-414 (in Chinese with English abstract).Google Scholar

  • Candela, P. A., & Picolli, P. (2005). Magmatic processses in the development of porphyry ore systems. Economic Geology, 100, 25-37.Google Scholar

  • Chappel, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 8, 173-174.Google Scholar

  • Cheng Yanbo, & Mao Jingwen (2010). Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting. Lithos, 120(3-4), 258-276. DOI: 10.1016/j.lithos.2010.08.013CrossrefGoogle Scholar

  • Cheng Yanbo, Mao Jingwen, Chen Maohong, Yang Zongxi, Feng Jiaru, & Zhao-Haijie (2008). LA-ICP-MS zircon dating of the alkaline rocks and lamprophyres in Gejiu area and its implications. Geology in China, 2008-06, per http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200806013.htm http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200806013.htm

  • Cloete, H. C. C. (1992). Occurrences of lamprophyres in South Africa. Geological Survey of South Africa. Annual Technical Report (LAB 90/7), Pretoria: Geol. Survey of South Africa, 128-132.Google Scholar

  • Conde, L. N., Pereira, V., Ribeira, A., Thadeau, E. D., & Thadeau, D. (1971). Jazigos hipogénicas de estanho e volframio. Livro-guia de excursao, No.7. I Congresso Hispano-Luso-Americana de geologia económica. 19-23 September 1971, Madrid, 24-25 September 1971 Lisboa (pp. 1-81). Lisboa: Direccao-Geral de Minas e Servicos Geologicos.Google Scholar

  • Darbyshire, D. P. F., & Shepherd, T. J. (1985). Chronology of granite magmatism and associated mineralization, SW England. Journal of the Geological Society, 142, 1159-1177. DOI: 10.1144/gsjgs.142.6.1159.CrossrefGoogle Scholar

  • Denisenko, V. K. (1978). Tungsten deposits. Leningrad: Izd. Nedra (in Russian).Google Scholar

  • Denisenko, V. K. (1986). Tungsten-bearing provinces of the USSR. In A. A. Beus (Ed.), Geology of tungsten (pp. 127-156), Earth Sciences, 18. International Geological Correlation Programme, Project 26 MAWAM.Google Scholar

  • Dietrich, A., Lehmann, B., Wallianos, A., Traxel, K., & Palacios, C. (1999). Magma mixing in Bolivian tin porphyries. Naturwissenschaften, 86(1), 40-43.Google Scholar

  • Dobson, D. C. (1982). Geology and alteration of the Lost River tin-tungsten-fluorine deposit. Economic Geology, 77(4), 1033-1052.CrossrefGoogle Scholar

  • Dzhenchuraeva A. V., Borisov F. I., & Shaidullina E. A. (2007). Geological, geophysical, geochemical and mineralogical models of the Trudovoe deposit. Report, State Agency on Geology and Mineral Resources of Kirgyzstan Republic. (written communication by G. G. Pavlova).Google Scholar

  • Efremova, C. V. (1983). Dikes and endogenous mineralization. Moskva: Izd. Nedra (in Russian).Google Scholar

  • Flerov, B. L. (1976). Tin deposits of the Yano-Kolyma orogenic regions. Novosibirsk: Izd. Nauka, Siberian Branch (in Russian).Google Scholar

  • Fortey, N. J. (1992). The Exeter volcanic rocks: geochemistry. Keyworth, Nottingham, UK: British Geological Survey (Technical report No WG/92/7, Mineralogical and Petrology series).Google Scholar

  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033-2048. DOI: 10.1093/petrology/42.11.2033.CrossrefGoogle Scholar

  • Geragthy, E. P., Carten, R. B., & Walker, B. M. (1988). Timing of Urad-Henderson and Climax porphyrymolybdenum systems, Central Colorado, as related to northern Rio Grande Rift tectonics. Bull. Geol. Soc. Am., 100(11), 1780-1786. DOI: 10.1130/0016-7606(1988)100<1780:TOUHAC>2.3.CO;2.CrossrefGoogle Scholar

  • Gorsky, V. (1958). Lamprophyres in the Bushveld granite on Klipdrif 90 Jr, Pretoria District. Pretoria, South Africa: Council for Geoscience (internal report, No. 1958-0036).Google Scholar

  • Govorov, I. N. (1977). Geochemistry of the ore districts of Maritime. Moskva: Izd. Nauka. (in Russian).Google Scholar

  • Groves, D. I., & Taylor, R. G. (1973). Greisenization and mineralization in the Anchor tin mine, NE Tasmania. Transactions of the Institution of Mining and Metallurgy, section B (Applied Earth Science), 82, B135-146.Google Scholar

  • Hawkes, J. R. (1981). A tectonic ‘watershed’ of fundamental consequence in the post-Westphalian evolution of Cornubia. Proceedings of the Ussher Society, 5(1), 128-131.Google Scholar

  • Hattori, K. H., & Keith, J. D. (2001). Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philipines, and Bingham Canyon, Utah, USA. Mineralium Deposita, 36(8), 799-806. DOI 10.1007/s001260100209.CrossrefGoogle Scholar

  • Higgings, N. C., Solomon, M., & Varne, R. (1985). The genesis of the Blue Tier Batholith, northeastern Tasmania. Lithos, 18(3-4), 129-149. DOI:org/10.1016/0024-4937(85)90015-5.CrossrefGoogle Scholar

  • Höll, R., Borisenko, A., Obolenskiy, A., Grechistchev, O., & Shcherbakov, Yu. (2000). Sn and Ta granitoidrelated ore-magmatic systems: Deputatsky and Ulug-Tanzek deposits, Russia. In A. A. Krementsky, B. Lehmann, & R. Seltmann (Eds.). Ore-bearing granites of Russia and adjacent countries. IMGRE, Moscow, 1783 Project Intas 93, IGCP Project 373, 127-141.Google Scholar

  • Holub, F. V., & Štemprok, M. (1999). Variscan lamprophyres and granitoid-related mineralizations: Comparison of the Krušné hory-Erzgebirge and Central Bohemian batholiths. In: C. J. Stanley et al. (Eds.), Mineral Processes: Processes to Processing. Rotterdam: A. A. Balkema, 365-368.Google Scholar

  • Hudson, T., & Arth, G. (1983). Tin granites of Seward Penninsula. Geological Society of America Bulletin, 94, 768-790.CrossrefGoogle Scholar

  • Hughes, D. (1997). The minette of South West England. Journal of Conference Abstracts, 2(1) per http://www.the-conference.com/JconfAbs/2/38.html http://www.the-conference.com/JconfAbs/2/38.html

  • Indolev, L. N. (1979). Dikes in the ore districts of Eastern Yakutia. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Indolev, L. N., & Nevoisa, G. G. (1974). Silver-lead deposits of Yakutia. Novosibirsk: Izd. Nauka (in Russian).Google Scholar

  • Ivanov, V. S., Buryanova I. Z., Zalishchak, V. L., Stepanov, G. N., & Strizhokova, A. A. (1980). Granitoids and monzonitoids of the ore districts of Maritime region. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Izokh, E. P., Kolmak, L. M., Nagovkaya, G. I., & Russ, V. V. (1957). Late Mesozoic intrusions of the Central Sikhote Alin and their association with mineralization. Trudy VSEGEI, new series, 21, Moskva: Gosud. Nauchno. Tekh. Izd. Literatury po Geol. i Okhr. Nedr (in Russian).Google Scholar

  • Kaemmel, Th. (1961). Geologie, Petrographie und Geochemie der Zinnlagerstätte Tannenberg (Vogtland). Geologie, 10 (Beiheft 30), 1-105.Google Scholar

  • Kaneda, H., & Takeuchi, S. (1988). Rare metals mineralogy of some Sn-W deposits in Southern China. Report of the Fifth Int. Symposium on tin and tungsten granites in Southeast Asia and Western Pacific, 17 - 19 October 1987, IGCP Project 220, 65-69.Google Scholar

  • Kempe, U., Bombach, K., Matukov, D., Schlothauer, T., Hutschenreuther, J., Wolf, D., & Sergeev, S. (2004). Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralization in the Eibenstock granite, Erzgebirge, Germany: Considering effects of zircon alteration. Mineralium Deposita, 39(5-6), 646-669. DOI: org/10.1007/s00126-004-0435-y.CrossrefGoogle Scholar

  • Kerrich, R., Goldfarb, R. J., & Richards, J. P. (2005). Metallogenic provinces in an evolving geodynamic framework. Economic Geology, 100, 1097-1136.Google Scholar

  • Khrushchov, N. A. (1961). Molybdenum. Evaluation of the deposits in search and exploration. Moskva: Gos. Nauchno-Tech. Izd. literatury po geologii i okhrane nedr (in Russian).Google Scholar

  • Kirkham, R. V., & Chorlton, L. B. (2005). Generalized Geology of the World: Age and Rock Type Domains. Geological Survey of Canada. http://gdr.nrcan.gc.ca/minres/data_e.php http://gdr.nrcan.gc.ca/minres/data_e.php

  • Korostelev, V. I. (1977). Dike complex of the Upper-Khandygskii granitoid massif of granodiorites. In V. I. Korostelev, S. D. Dmitriev I. I., Kolodeznikov, N. M. Savvinov, I. A. Tomtozov, & F. I. Tschurbaev (Eds.), Geology and regularities in the distribution of resources of Yakutia. Yakutsk: Izd. Yakutsk State University (in Russian).Google Scholar

  • Kovalenko, V. I., Kuzmin, M. I., Zonenshain, L. P., Nagibina, L. T., Pavlenko, A. S., Vladykin, N. V., Tseden, T., Gundsambu, T., & Goreglyad, A. V. (1971). Rare-metal granites of Mongolia. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Kozlov, V. D. (1985). Geochemistry and ore-bearing capacity of granites in rare metal provinces. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Kozlov, V. D., & Efremov, S. V. (1999). Potassic alkali basaltoids and geochemical specialization of associated rare-metal granites. Russian Geology and Geophysics, 40, 973-983.Google Scholar

  • Kramer, W. (1976). Genese der Lamprophyre im Bereich der Fichtelgebirgisch-Erzgebirgischen Antiklinalzone. Chemie der Erde, 35, 1-49.Google Scholar

  • Kramer, W. (1988). Magmengenetische Aspekte der Lithosphärenentwicklung. Series in Geological Sciences, Berlin: Akademie-Verlag.Google Scholar

  • Kremenetsky, A. A., Beskin, S. M., Lehmann, B., & Seltmann, R. (2000). Economic geology of granite-related ore deposits of Russia and other FSU countries: an overview. In A. A. Kremenetsky, B. Lehmann, & R. Seltmann (Eds.), Ore-bearing granites of Russia and adjacent countries, IMGRE, Intas 93-1783 Project, IGCP Project 373, 3-60.Google Scholar

  • Krymsky, R. S., & Belaytsky, B. V. (2001). The genesis of rare metal-fluorite mineralization (Voznesenka orefield, Far East, Russia): Nd-Sr isotope constraints. Eleventh Annual Goldschmidt Conference, May 20-24, 2001, Hot Springs, Virginia, USA (Abstracts, pdf. 3546).Google Scholar

  • Layer P. W., Newberry R., Fujita K., Parfenov L. M., Trunilina V. A., & Bakharev A. G. (2001). Tectonic setting of the plutonic belts of Yakutia, Northeast Russia, based on 40Ar/39Ar and trace element geochemistry. Geology, 29(2), 167-170. DOI: 10.1130/0091-7613(2001)029<0167:TSOTPB>2.0.CO;2.CrossrefGoogle Scholar

  • Le Bas, M. (2007). Igneous classification revisited 4: Lamprophyres. Geology Today, 23, 167-168.Google Scholar

  • Le Maitre, R. V. (Ed.) (1989). A classification of igneous rocks and a glossary of terms. Oxford: Blackwell.Google Scholar

  • Leat, P. T., Thomspon, R. N., Morrison, M. A., Hendry, G. L., & Trayhorn, S. C. (1987). Geodynamic significance of post-Variscan intrusive and extrusive potassic magmatism in SW England. Transactions of the Royal Society of Edinburgh: Earth Sciences, 77(4), 349-360. DOI: 10.1017/S0263593300023221.CrossrefGoogle Scholar

  • Lehmann, B. (1990). Metallogeny of tin. Lecture Notes in Earth Sciences, 32, Berlin: Springer Verlag.Google Scholar

  • Levitskii, O. V., Aristov, V. V., Konstatinov, R. M., & Stankeev, E. A. (1963): The Etyka tin deposit of Eastern Transbaikalia. Trudy IGEM, 100, Moskva: Izd. AN SSSR (in Russian).Google Scholar

  • Lindgren, W. (1933). Mineral deposits (4th edition). New York: Mc Graw-Hill.Google Scholar

  • Litvinovskii, B., Antipin, V.V, Reyf, F., & Kuzmin, M. (1995). Rare metal and palyngenetic granitoids of Transbaikalia and related mineralization. Excursion Guide. Transbaikalia Field Meeting, August 1-15, 1995, Irkutsk-Ulan Ude-Moskva.Google Scholar

  • Lugov, S. F., Kryuchkov, A. A., & Makeev, B. V. (Eds.) (1986). Geology of tin deposits of the USSR, vol.1 & 2, Moskva: Izd. Nedra (in Russian).Google Scholar

  • Magakyan, I. G. (1974). Metallogeny (principal ore belts). Moskva: Izd. Nedra (in Russian)Google Scholar

  • Makeev, B. V., Pavlovskii, A. B., Pokalov, V. T., Frolov A. A., Chernov, B. S., Belov, S. V., & Valkov, V. O. (1983). Structures of ore fields and of tungsten, molybdenum and tin deposits. Moskva: Izd. Nedra (in Russian).Google Scholar

  • Mamadzhanov, Yu. (2001). Geodynamic development and magmatic formations of the Kurama zone of Middle Tien Shan. Izvestia Akademii Nauk Tadzhik. SSR. Ser. Phys.-math., geol. & chem. Sciences, 1, 156-169.Google Scholar

  • Manning, D. A. C. (1998). Granites and associated igneous activity. In E. B. Selwood., E. M. Durrance, & C. M. Bristow (Eds.), The geology of Cornwall (pp. 120-135). Exeter, UK: University of Exeter Press.Google Scholar

  • Mao Jingwen, Chen Yuchuan, Bi Chensi, & Li Hongyan (1995). Geology of tin deposits in China. Scientia Geological Sinica, 4(2), 121-177.Google Scholar

  • Marinov, N. A., Khasin, R. A., & Khurts, Ch. (1977). Geology of the Mongolian People's Republic, vol. 3, Mineral Resources. Moskva: Izd. Nedra (in Russian).Google Scholar

  • Maughan, D. T., Keith, J. D., Christiansen, E. H., Pulsipher, T., Hattori, K., & Evans, N. J. (2002). Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Mineralium Deposita, 37, 14-37. DOI: 10.1007/s00126-001-0228-5.CrossrefGoogle Scholar

  • Mc Clenaghan, M. P., & Baillie, P. W. (1975). Geological atlas 1:250.000 series, sheet no. SK 55/4, Explan. Report. Launceston: Geol. Survey of Tasmania.Google Scholar

  • Métais, D., & Chayes, F. (1963): Varieties of lamprophyres. Carnegie Institution of Washington Year Book, 62, 156-157.Google Scholar

  • Métais, D., & Chayes, F. (1964). Kersantites and vogesites: a possible example of group heteromorphism. Carnegie Institution of Washington Year Book, 63, 196-199.Google Scholar

  • Mikhaleva, L. A. (1989). Mesozoic lamprophyre-diabase formation in southern Siberia. Trudy Inst. Geol. & Geophys., 71, Novosibirsk: Izd. Nauka (Siberian branch) (in Russian).Google Scholar

  • Mikhaleva, L. A., & Tychinskii, A. A. (1972). Dikes and mineralization of the Klichkin ore district (Eastern Transbaikalia). Geologia & Geofisika, 7 (1), (Siberian Branch, AN SSSR), 44-49 (in Russian).Google Scholar

  • Milov, A. P., & Ivanov, V. S. (1965). Late Mesozoic granitoids of Central Chukotka. In N. A. Shilo et al. (Eds.) Late Mesozoic granitoids of Chukotka (pp. 141-187). Trudy Severo-vostochnogo Kompleksnogo Nauchno Issledovatel'skogo Instituta, 12, Magadan. Siberian Branch of the Academy of Sciences SSSR (in Russian).Google Scholar

  • Müller, C. H. (1848). Die Erzlagerstätten der Umgegend von Marienberg. Unpublished manuscript, Geologische Landesuntersuchung Sachsen; Sächsisches Staatsarchiv, Bergarchiv Freiberg.Google Scholar

  • Müller, D., & Groves, D. I. (1993). Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geology Reviews, 8, 383-406.CrossrefGoogle Scholar

  • Müller, D., & Groves, D. I. (1997): Potassic igneous rocks and associated gold-copper mineralization. Lecture Notes in Earth Sciences, 56, (2nd ed.). Berlin-New York: Springer Verlag.Google Scholar

  • Novák, J., Pivec, E., Holub, F. V., & Štemprok, M. (2001). Greisenization of lamprophyres in the Krupka Sn-W district in the eastern Krušné hory/Erzgebirge, Czech Republic. In A. Piestrzynski et al. (Eds), Mineral Deposits at the Beginning of the 21st Century (pp. 465-467). Rotterdam: A. A. Balkema.Google Scholar

  • Obolenskaya, R. V. (1971). Chuya complex of alkaline basaltoids of the Mountain (Gornyi) Altai. Novosibirsk: Izd. Nauka (Siberian branch) (in Russian).Google Scholar

  • Ontoev, D. O. (1974). Stage character of mineralization and zoning of ore deposits in Transbaikalia. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Osipova, G. A. (1974). The relationship between mineralization and magmatism and the source of ore substance. In M. Štemprok (Ed.), Metallization Associated with Acid Magmatism, vol. 1, (338-343). Praha, Czechoslovakia: Central Geol. Institute.Google Scholar

  • Pavlova, G. G., & Borisenko, A. S. (2009). The age of Ag-Sb deposits of Central Asia and their correlation with other types of ore systems and magmatism. Ore Geology Reviews, 35 (2), 164-185. DOI: 10.1016/j.oregeorev.2008.11.006.CrossrefGoogle Scholar

  • Pavlova, G. G., & Borovikov, A. A. (2010). Silver-antimony deposits of Central Asia: physico-chemical model of formation and sources of mineralisation. Australian Journal of Earth Sciences, 57 (6), 755-775. DOI: 10.1080/08120091003736540.CrossrefGoogle Scholar

  • Pavlova, G. G., Borisenko, A. S., Goverdovskii, V.A, Travin, A.V, Zhukova, I. A., & Tretyakova, I. G. (2008). Permian-Triassic magmatism and Ag-Sb mineralization in the southeatern Altai and northwestern Mongolia. Russian Geology and Geophysics, 49, 545-555.CrossrefGoogle Scholar

  • Pavlova G. G., Kholmogorov A. I., Travin A. V., Trunilina V. A., Borisenko A. S., Prokopiev A. V., & Ivanov A. I. (2009). The chronology of magmatic and ore-forming processes of the Deputatsky ore cluster (Yakutia). IV Russian Conference on Isotope Geochronology. Abstract volume (pp. 71-74). St. Petersburg: Publishing House SPb (in Russian).Google Scholar

  • Pavlova G. G., Borisenko A. S., Kruk N. N., & Rudnev S. N. (2010). The age of Ag-Sb mineralization of the SE Pamir and its relation to magmatism. Izvestia RAEN, volume 1 (36), 60-67.Google Scholar

  • Petersen, W. E., Neumann, E. R., & Jensen, B. B. (1996). The upper mantle under La Palma, Canary Islands: formation of Si-K-Na-rich melt and its importance as a metasomatic agent. Contribution to Mineralogy and Petrology, 125(2-3), 113-139. DOI: 10.1007/s004100050210.CrossrefGoogle Scholar

  • Pirajno, F. (2009). Hydrothermal deposits: processes and mineral systems. Berlin, Heidelberg: Springer Verlag.Google Scholar

  • Pivec, P., Holub, F. V., Lang, M., Novák, J. K., & Štemprok, M. (2002). Rock-forming minerals of lamprophyres and associated mafic dykes from the Krušné hory/Erzgebirge (Czech Republic). Journal of the Czech Geolological Society, 47, 23-32.Google Scholar

  • Popov, V. S., Belevitin, V. V., & Semina, V. A. (1981). Metallogeny of hydrothermal rare metal deposits. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Povilaitis, M. M. (1960). Main features of mineralogy of the Dzhida molybdenum-tungsten deposit. Trudy IGEM, 24, Moskva: Izd. AN SSSR (in Russian).Google Scholar

  • Povilaitis, M. M. (1981). Tungsten formations and the reguliarities of their distribution. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Prelevic, D., Foley, S. F., Cvetkovic, V., & Romer, R. L. (2004). Origin of minette by mixing of lamproite and dacite magmas in Veliki Majdan, Serbia. Journal of Petrology, 45(4), 759-792. DOI: 10.1093/petrology/egg109.CrossrefGoogle Scholar

  • Radkevich, E. A., Gonevchuk, V. G., Kokorin, A. M., & Korostelev, P. G. (1974). The age and space relation of tin deposits of the cassiterite-silicate formation to granites (Far East USSR). In M. Štemprok (Ed.), Metallization Associated with Acid Magmatism, vol. 1 (pp. 348-350). Praha, Czechoslovakia: Central Geol. Institute. DOI:10.2113/gscanmin.38.4.915.CrossrefGoogle Scholar

  • Reif, F. G. (2000). The role of magmatic processes in the formation of banded Li, F enriched granites from the Orlovkatantalum deposit, Transbaikalia, Russia: micrometric evidence. Canadian Mineralogist, 38, 915-936.CrossrefGoogle Scholar

  • Robb, L. (2005). Introduction to ore-forming processes. Oxford: Blackwell Publishing Co.Google Scholar

  • Rock, N. M. S. (1991). Lamprophyres (with contributions by D. R. Bowes & A. E. Wright). Glasgow & London: Blackie, New York: Van Nostrand, Reinhold.Google Scholar

  • Rock, N. M. S., Groves, D. I., Perring, C. S., & Golding, S. D. (1989). Gold, lamprophyres, and porphyries: What does their association mean? Economic Geology Monograph, 6, 609-625.Google Scholar

  • Rodionov, S. M. & 37 co-authors (2004). Descriptions of Northeast Asia metallogenic belts. Northeast Asia Metallogenic Belt Descriptions. http://pubs.usgs.gov/of/2004/1252/metallog_belt_map/metbelt.descript.pdf

  • Rundkvist, D. V., Denisenko, V. K., & Pavlova, I. G. (1971). Greisen deposits. Leningrad: Izd. Nedra (in Russian).Google Scholar

  • Sainsbury, C. L. (1969). Geology and ore deposits of the Central York Mountains, Western Seward Penninsula, Alaska. U. S. Geological Survey Bulletin, 1287, Washington: U. S. Government Printing Office.Google Scholar

  • Sainsbury, C. L., & Hamilton, J. C. (1967). Geology of lode tin deposits. 1st Technical Conference on Tin, International Tin Council, London, 317-349.Google Scholar

  • Sainsbury, C. L., Hamilton, J., & Hoffman, C. Jr. (1968). Geochemical cycle of selected trace elements in the tin-tungsten-beryllium district. U. S. Geological Survey Bulletin, 1242 F, Washington: U. S. Government Printing Office.Google Scholar

  • Scambelluri, M., & Phillippot, P. (2001). Deep fluids in subduction zones. Lithos, 55(1-4), 213-227.CrossrefGoogle Scholar

  • Seifert, Th. (1994). Zur Metallogenie des Lagerstättendistriktes Marienberg (Ostteil des Mittelerzgebirgischen Antiklinalbereiches). Dissertation, TU Bergakademie Freiberg. (published in microfiche format by Verlag Hänsel-Hohenhausen, Frankfurt, Germany, 1996).Google Scholar

  • Seifert, Th. (1999). Relationship between late Variscan lamprophyres and hydrothermal vein mineralization in the Erzgebirge. In C. J. Stanley et al. (Eds.), Mineral Deposits: Processes to Processing (pp. 429-432). Rotterdam: A. A. Balkema.Google Scholar

  • Seifert, Th. (2007). Metallogenetische Bedeutung von Kalkalkali-(CA-)Lamprophyren - Beitrag zur Genese und Exploration von Sn-W-Mo-, Ag-Polymetall- und U-Lagerstätten am NW-Rand des Böhmischen Massivs (Deutschland, Tschechische Republik). Kumulative Habilitation an der Fakultät für Geowissenschaften, Geotechnik und Bergbau der TU Bergakademie Freiberg (in English).Google Scholar

  • Seifert, Th. (2008). Metallogeny and petrogenesis of lamprophyres in the Mid-European Variscides - Postcollisional magmatism and its relationship to Late Variscan ore forming processes in the Erzgebirge (Bohemian Massif). Amsterdam: IOS Press BV.Google Scholar

  • Seifert, Th. (2010). Contributions to the metallogenetic importance of lamprophyres - examples from polymetallic Au-, Sn-W-Mo-Li-In-, As-Zn-Sn-Cu-In-Pb-Ag-/Ag-Sb-, and U-ore clusters. Mineralogia - Special Papers, 37, 55-58.Google Scholar

  • Seifert, Th., Baumann, L. (1994). On the Metalllogeny of the Central Erzgebirge Anticlinal Area (Marienberg District), Saxony, Germany. In: von Gehlen, K., & Klemm, D. D. (Eds.), Mineral deposits of the Erzgebirge/Krusné hory (Germany/Czech Republic): Reviews and results of recent investigations. Monograph Series on Mineral Deposits, 31 (pp. 169-190). Berlin-Stuttgart: Gebrüder Bornträger.Google Scholar

  • Seifert, Th., & Kempe, U. (1994). Sn-W-Lagerstätten und spätvariszische Magmatite des Erzgebirges. Beihefte zum European Journal of Mineralogy, 6(2), 125-172.Google Scholar

  • Seifert, Th., & Sandmann, D. (2006). Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany. Ore Geology Reviews, 28(1), 1-31. http://www.sciencedirect.com/science/article/pii/S0169136805000867. http://www.sciencedirect.com/science/article/pii/S0169136805000867

  • Seifert, Th., Pavlova, G. G., & Borisenko, A. S. (2011). Types of Ag-polymetallic/Ag-Sb vein-type mineralization in the European Variscides, Yakutia, Altai, Tien Shan, and Pamir. International Conference "Geology, Tectonics and Minerageny of Central Asia", VSEGEI, St. Petersburg, Russia, June 6-8, 2011, abstracts volume, session: "Metallogeny and resource potential assessment of the Central Asian mobile belt", 5 pages (conference CD).Google Scholar

  • Shail, R. K., & Wilkinson, J. J. (1994). Late to post-Variscan extensional tectonics in South Cornwall. Proceedings of the Usher Society, 8(2), 262-270.Google Scholar

  • Shannon, J. R., Nelson, E. P., & Golden, R. J. Jr. (2004). Surface and underground geology of the world-class Henderson molybdenum porphyry mine, Colorado. In E. P. Nelson, & E. A. Erslev (Eds.), Field trips in the southern Rocky Mountains, USA. Geological Society of America, Field Guide 5, 207-218.Google Scholar

  • Shcherba, G. N. (1957). The geology of the Narym massif of granitoids in the Southern Altai. Alma Ata: Izd. AN Kazakh. SSR (in Russian).Google Scholar

  • Shcherba, G. N. (1960). The formation of rare-metal deposits of Central Kazakhstan. Alma Ata: Izd. AN Kazakh. SSR (in Russian).Google Scholar

  • Shchukin, S. I. (1974). Lamprophyres and ores. Geologiya Rudnykh Mestorozhdenii, 16 (6), 97-101 (in Russian).Google Scholar

  • Shipulin, F. K. (1968). Intrusions and ore mineralization. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Sinclair, W. D. (2007). Porphyry deposits. In W. D. Goodfellow, (Ed.), Mineral Deposits of Canada. A synthesis of Major Deposit Types. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, Ottawa, 223-243.Google Scholar

  • Sinclair, W. D., Gonevchuk, G. A., Korostelev, P. G., Semenyak, B. I., Rodinov, S., Seltmann, R., & Stemprok, M. (2011): World distribution of tin and tungsten deposits, in scale 1:35,000,000, Ottawa: Geological Survey of Canada.Google Scholar

  • Sillitoe, R. H. (1974). Tin mineralization above mantle hot spots. Nature, 248, 497-499.Google Scholar

  • Smirnov V. I., & 41 coauthors (1978). Ore deposits of the USSR, vol. 3, Moskva: Izd. Nedra (in Russian).Google Scholar

  • Steininger, R. C. (1985). Geology of the Kitsault molybdenum deposit, British Columbia. Econonomic Geology, 80, 57-71.CrossrefGoogle Scholar

  • Štemprok, M. (1967). Genetische Probleme der Zinnvererzung im Erzgebirge. Mineralium Deposita, 2, 102-118.CrossrefGoogle Scholar

  • Štemprok, M. (1978). Classification criteria of tin, tungsten and molybdenum deposits. Studia Geologica, 14, 119-143.Google Scholar

  • Štemprok, M. (1987). Greisenization (a review). Geologische Rundschau, 76, 169-175.CrossrefGoogle Scholar

  • Štemprok, M. (1990). Intrusion sequences within ore-bearing granitoid plutons. Journal of Geology, 25, 413-418.Google Scholar

  • Štemprok, M. (1995). Genetic significance of lamproite dykes in the Sn-W-Mo districts related to granitoids. In J. Pašava & B. Kříbek, Mineral deposits from their origin to their environmental impacts (pp. 531-534). Rotterdam: A. A. Balkema.Google Scholar

  • Štemprok, M. (1998). Magmatic zonation of rare metal-bearing granitoid bodies in orogenic belts. Proceedings of the 9th Quadrenial IAGOD Symposium, Schweitzerbartsche Verlagsbuchhandlung, Stuttgart, 441-461.Google Scholar

  • Štemprok, M., & Seltmann, R. (1994). The metallogeny of the Erzgebirge/Krušné hory. In R. Seltmann, H. Kämpf & P. Möller (Eds.), Metallogeny of collisional orogens (pp. 61-69). Praha: Czech Geological Survey.Google Scholar

  • Štemprok, M., & Seifert, Th. (2010). The association of lamprophyric intrusions and rare metal mineralization. Mineralogia - Special Papers, 37, 61-62.Google Scholar

  • Štemprok, M., Novák, J. K., & David, J. (1994). The association of the granites and tin-tungsten mineralization in the eastern Krušné hory (Erzgebirge), Czech Republic. In: von Gehlen, K., & Klemm, D. D. (Eds.), Mineral deposits of the Erzgebirge/Krusné hory (Germany/Czech Republic): Reviews and results of recent investigations. Monograph Series on Mineral Deposits, 31 (pp. 97-129). Berlin-Stuttgart: Gebrüder Bornträger.Google Scholar

  • Štemprok, M., Seifert, Th., Holub, F. V., Chlupáčová, M., Dolejš, D., Novák, J. K., Pivec E., & Lang, M. (2008). Petrology and geochemistry of Variscan dykes from the Jáchymov (Joachimstahl) ore district, Czech Republic. Journal of Geosciences, 53, 65-104. DOI: 10.3190/jgeosci.020.CrossrefGoogle Scholar

  • Sun, S. S., & Higgings, N. C. (1996). Neodymium and strontium study of the Blue Tier Batholith, NE Tasmania, and its bearing on the origin of tin-bearing alkali feldspar granites. Ore Geology Reviews, 10, 339-365.CrossrefGoogle Scholar

  • Syritso, L. F. (2002). Mesozoic granitoids of Eastern Transbaikalia and problems of rare metal mineralization. St. Petersburg: Izd. St. Petersburg University.Google Scholar

  • Tauson, L. V. (1977). Geochemical types and the potential ore-bearing capacity of granitoids. Moskva: Izd. Nauka (in Russian).Google Scholar

  • Tauson, L. V., Antipin, V. S., Sacharov, M. N., & Subkov, V. S. (1984). Mineralogisch-geochemische Kriterien des Ursprungs und des Erzgehaltes magmatischer Gesteine der Latitserie. Freiberger Forschungshefte, C 389, Leipzig, Germany, 277-283.Google Scholar

  • Taylor, R. (1979). Geology of tin deposits. Developments in Economic Geology, 11, Amsterdam, Oxford, New York: Elsevier Scientific Publishing Co.Google Scholar

  • Tischendorf, G. (1977). Geochemical and petrogenetic characteristics of silicic magmatic rocks associated with rare element mineralization. In M. Štemprok, L. Burnol, & G. Tischendorf (Eds.) Metallization Associated with Acid Magmatism, vol. 2, (pp. 41-96). Praha: Central Geol. Institute.Google Scholar

  • Troshin, Yu.P. (1978). Geochemistry of volatile components in magmatic rocks, haloes and ores of Eastern Transbaikalia. Novosibirsk: Izd. Nauka (RAS Siberian branch) (in Russian)Google Scholar

  • Turpin, L., Velde, D., & Pinte, G. (1988). Geochemical comparison between minettes and kersantites from the Western European Hercynian orogen: trace element and Pb-Sr-Nd isotope constraints on their origin. Earth and Planetary Science Letters, 87, 73-86.CrossrefGoogle Scholar

  • Vasyukova, E. (2010). Petrology of lamprophyres of Chuya complex (SE Altai). Mineralogia - Special Papers, 37, 63-64.Google Scholar

  • Velde, D. (1968). Les transformations de l'olivine dans les lamprophyres et lamproites. Bulletin de la Société Géologique de France, 10, 601-612.Google Scholar

  • Verschure, R. H., & Bon, E. H. (1972). Geology and geochronology of tin-bearing volcano-complexes in Rondonia (Western Brazil). Reflections Report, Laboratorium voor Isotopen Geologie, The Netherlands, 177-198.Google Scholar

  • Wallace, S., Mc Kenzie, W., Blair, R., & Muncaster, N. (1978). Geology of the Urad and Henderson molybdenite deposits, Clear Creek County, Colorado with a section on a comparison of these deposits with those of Climax, Colorado. Economic Geology, 73, 325-368.CrossrefGoogle Scholar

  • Watznauer, A. (1964). Der heutige Stand des Lamprophyrproblems. Geologie, 12, 812-820.Google Scholar

  • Weppe, M. (1951). Contribution a l' etude des gites de tungstene francais. Géologie Appliquée et Prospection Miniere, 3, (1), 21-130.Google Scholar

  • Wimmenauer, W. (1973). Granites et lamprophyres. Bulletin de la Société Géologique de France, 15, 195-198.Google Scholar

  • Wooley, A. R., Bergman, S. C., Edgar, A. D., Le Bas, M. J., Mitchell, R. H., Rock, N. M. S., & Smith, B. H. S. (1996). Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Canadian Mineralogist, 34, 175-186.Google Scholar

  • Zagruzina, I. A. (1965). Late Mesozoic granitoids of the Eastern coast of the Chaun bay (Western Chukotka). In N. A. Shilo et al. (Eds.). Late Mesozoic granitoids of Chukotka (pp. 4-140). Trudy Severo-vostochnogo Kompleksnogo Nauchno Issledovatel'skogo Instituta, 12, Magadan. Siberian Branch of the Academy of Sciences SSSR (in Russian).Google Scholar

  • Zhilinskii, G. V. (1959). Tin-bearing capacity of Central Kazakhstan. Alma Ata: Izd. AN Kazakh. SSR (in Russian).Google Scholar

  • Zil'bermints, A. V. (1966). Geology and genesis of the Iul'tin tin-tungsten deposit. Moskva: Izd. Nauka (in Russian).Google Scholar

About the article

Published Online: 2012-07-04

Published in Print: 2011-01-01

Citation Information: Mineralogia, Volume 42, Issue 2-3, Pages 121–162, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-011-0011-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Karel Breiter, Jana Ďurišová, Tomáš Hrstka, Zuzana Korbelová, Michaela Vaňková, Michaela Vašinová Galiová, Viktor Kanický, Petr Rambousek, Ilja Knésl, Petr Dobeš, and Marek Dosbaba
Lithos, 2017

Comments (0)

Please log in or register to comment.
Log in