Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

Simple method of copper analysis using monosodium glutamate and its application in ore analysis

Erik Prasetyo
  • Corresponding author
  • Indonesian Institute of Sciences, Jl. Ir. Sutami km. 15, Tanjung Bintang, Bandar Lampung, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-28 | DOI: https://doi.org/10.2478/v10002-012-0002-6

Abstract

A simple photometric method for copper (II) analysis using monosodium glutamate (MSG) is presented. The method is technically simple, inexpensive, quantitative, and makes use of readily available reagents. The rapid reaction of copper (II) with glutamate in aqueous solution at pH 10 to form a blue complex serves as a basis for the determination of copper (II) in the range of 10-500 μg/ml. Copper recovery is > 82%. The method could be used to determine copper (II) concentrations in iron ore samples.

Keywords: photometric determination; copper; monosodium glutamate

  • Al-Sibaai, A. A., & Fogg, A. G. (1973). Stability of dilute standard solutions of antimony, arsenic, iron and rhenium used in colorimetry. Analyst, 98, 732-738 DOI: 10.1039/AN9739800732.CrossrefGoogle Scholar

  • Bastug, A. S., Goz, S. E., Talman, Y., Gokturk, S., Asil, E., & Caliskan, E. (2011). Formation constants and coordination thermodynamics for binary complexes of Cu(II) and some α-amino acids in aqueous solution. Journal of Coordination Chemistry, 64(2), 281-292. DOI: 10.1080/00958972.2010.541454.CrossrefGoogle Scholar

  • Butler, E. J., & Forbes, D. H. S. (1965). A comparison of three absorptiometric methods for the determination of copper in biological materials. Analytica Chimica Acta, 33, 59-66. DOI: 10.1016/S0003-2670(01)84854-6.CrossrefGoogle Scholar

  • Castro, B., Lima, J. L. F. C., & Reis, S. (1995). Potentiometric determination of formation constants of copper(II)/bile acid/peptide in aqueous solute. Journal of Pharmaceutical and Biomedical Analysis, 13(4/5) 465-470.CrossrefGoogle Scholar

  • Ghasemi, J., Ahmadi, Sh., & Torkestani, K. (2003). Simultaneous determination of copper, nickel, cobalt and zinc using zincon as a metallochromic indicator with partial least squares. Analytica Chimica Acta, 487(2), 181-188. DOI: 10.1016/S0003-2670(03)00556-7.CrossrefGoogle Scholar

  • Hamada, Y. Z., Holyfield, H., Rosli, K., & Burkey, T. (2009). Equilibrium models of Cr3+ and Cu2+ with glutamate. Journal of Coordination Chemistry, 62(5), 721-733. DOI: 10.1080/00958970802353660.CrossrefGoogle Scholar

  • Hoste, J., Eeckhout, J., & Gillis, J. (1953). Spectrophotometric determination of copper with cuproine. AnalyticaChimica Acta, 9, 263-274.Google Scholar

  • Irving, H. M., & Tomlinson, W. R. (1968). Effect of chromium(III) and of other ions on the absorptiometric determination of copper with 2, 2'-biquinolyl. Talanta, 15(11), 1267-1279. DOI: org/10.1016/0039-9140(68)80049-9.Google Scholar

  • Jacobsen, E., Langmyhr, F. J., & Selmer-Olsen, A. R. (1961). On the use of bis-cyclohexanone-oxalyldihydrazone and bis-acetaldehyde-oxalyldihydrazone in the analysis of copper. Analytica Chimica Acta, 24, 579-588. DOI: 10.1016/0003-2670(61)80120-7.CrossrefGoogle Scholar

  • Kállay, C., Várnagy, K., Micera, G., Sanna, D., & Sóvágó, I. (2005). Copper (II) complexes of oligopeptides containing aspartyl and glutamyl residues. Potentiometric and spectroscopic studies. Journal of Inorganic Biochemistry, 99(7), 1514-1525. DOI: 10.1016/j.jinorgbio.2005.04.009.PubMedCrossrefGoogle Scholar

  • Kumar, B., Singh, H. B., Katyal, M., & Sharma, R. L. (1991). Spectrophotometric and derivative spectrophotometric determination of copper (II) with dithizone in aqueous phase. Microchimica Acta, 105(1-3), 79-87.Google Scholar

  • Larsen, E. R., (1974). Spectrophotometric determination of copper in fertilizer with neocuproine. AnalyticalChemistry, 46(8), 1131-1132. DOI: 10.1021/ac60344a047.CrossrefGoogle Scholar

  • Laznicka, P. (2006). Giant metallic deposit: Future Sources of Industrial Metals. Berlin: Springer Verlag.Google Scholar

  • Marczenko, Z., & Balcerzak, M. (2000). Separation, Preconcentration and Spectrophotometry in InorganicAnalysis. Amsterdam: Elsevier.Google Scholar

  • Moon, C. J., Whateley, M. K. G., & Evans, A. M. (2006). Introduction to Mineral Exploration (2 ed.). Blackwell Publishing.Google Scholar

  • Ninomiya, K., (1998). Natural occurrence. Food Reviews International, 14(2-3), 177-211.CrossrefGoogle Scholar

  • Peterson, R. E., & Bollier, M. E. (1955). Spectrophotometric determination of serum copper with biscyclohexanone oxalydishydrasone. Analytical Chemistry, 27, 1195-1197.CrossrefGoogle Scholar

  • Ravnik, V., Dermelj, M., & Kosta, L. (1974). A highly selective diethyldithiocarbamate extraction system in activation analysis of copper, indium, manganese and zinc, Application to the analysis of standard reference materials. Journal of Radioanalytical and Nuclear Chemistry, 20(2), 443-453. 146 Sabel, C. E., Neureuther, J. M., & Siemann, S. (2010). A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon. Analytical Biochemistry, 397, 218-226. DOI: 10.1016/j.ab.2009.10.037.CrossrefGoogle Scholar

  • San Andres, M. P., Marina, M. L., & Vera, S. (1994). Spectrophotometric determination of copper(II), nickel(II) and cobalt(II) as complexes with sodium diethyldithiocarbamate in cationic micellar medium of exadecyltrimethylammonium salts. Talanta, 41(2), 179-185. DOI: 10.1016/0039-9140(94)80105-3.CrossrefGoogle Scholar

  • Shah, S. M., & Paul, J. (1972). Simultaneous determination of copper and manganese with sodium diethyl dithiocarbamate. Microchemical Journal, 17(1), 119-124. DOI: 10.1016/0026-265X(72)90046-X.CrossrefGoogle Scholar

  • Stoner, R. E., & Dasler, W. (1964). Spectrophotometric Determination of Microgram Quantities of Copper in Biologic Materials; Clinical Chemistry, 10, 845-852.PubMedGoogle Scholar

  • Thakur, M., & Deb, M. K. (1999). The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX-100 and N,N%-diphenylbenzamidine for the spectrophotometric determination of copper in real samples. Talanta,49(3), 561-569.CrossrefGoogle Scholar

About the article

Published Online: 2013-05-28

Published in Print: 2012-03-01


Citation Information: Mineralogia Polonica, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-012-0002-6.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in