Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
See all formats and pricing
More options …

Mössbauer study of Fe phases in terrestrial olivine basalts from southern Egypt

Kamaleldin M. Hassan
  • Corresponding author
  • Department of Radioactive Sedimentary Deposits, Research Sector, Nuclear Materials Authority, P.O. Box 530, Maadi, Cairo, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julius Dekan
  • Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava Ilkovicova 3, 812 19 Bratislava, Slovakia;
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-31 | DOI: https://doi.org/10.2478/mipo-2013-0001


Olivine basalts from southern Egypt were studied by 57Fe Mössbauer spectroscopy at 297 and 77 K, and by optical microscopy and X-ray diffraction. The 57Fe Mössbauer spectra show three-magnetic sextets, three doublets of ferrous (Fe2+), and a weak ferric (Fe3+) doublet that is attributable to a nanophase oxide (npOx). The magnetic sextets relate to titanomagnetite and the Fe2+ doublets to olivine, pyroxene, and ulvöspinel. Variations in the hyperfine parameters of the various Fe components are attributed to changes in the local crystal chemistry. The intensity of oxidation (Fe3+/ΣFe) in the rocks varies from 20-27% with the oxidized iron largely residing in the titanomagnetite.

Keywords : Egypt; olivine basalts; Mössbauer spectroscopy; spinel minerals; pyroxene


  • Agresti, D. (2012). Temperature dependence of the quadrupole splitting of olivine and pyroxene from Plains of Gusev Crater on Mars. Hyperfine Interactions, 208(1-3), 117-121. DOI: 10.1007/s10751-011-0405-6.CrossrefGoogle Scholar

  • Audunnson, H., Levi, S., & Hodges, F. (1992) Magnetic property zonation in a thick lava flow. Journal of Geophysical Research, 97(B4), 4349-4360. DOI: 10.1029/91JB01508.CrossrefGoogle Scholar

  • Cadogan, J.M., & Devlin, E.J. (2012). Mössbauer study of the Ordinary-Chondrite meterorite Thylacine Hole-001. Hyperfine Interactions, 208(1-3), 91-94 (2012). DOI: 10.1007/s10751-011-0417-2.CrossrefGoogle Scholar

  • Christie, D.M., Carmichael, I.S.E., & Langmuir, C.H. (1986). Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters, 79, 397-411. http://dx.doi.org/10.1016/0012-821X(86)90195-0.CrossrefGoogle Scholar

  • Egyptian Geological Survey and Mining Authority (1982). Geological map of Egypt, scale 1:2,000,000. Abbasyia, Cairo, Egypt: Geological Survey and Mining Authority.Google Scholar

  • Franz, G., Puchelt, H., & Pasteels, P. (1983). Petrology, geochemistry and age relations of Triassic and Tertiary volcanic rocks from SW Egypt and NW Sudan. Journal of African Earth Sciences, 6, 335-352. http://dx.doi.org/10.1016/0899-5362(87)90077-7.CrossrefGoogle Scholar

  • Gunnlaugsson, H.P., Rasmussen, H., Kristjánsson, L., Steinthorsson, Helgason, Ö., Nørnberg, P., Madsen, M.B., & Mørup, S. (2008). Mössbauer spectroscopy of magnetic minerals in basalt on Earth and Mars. Hyperfine Interactions, 182(1-3), 87-101. DOI: 10.1007/s10751-008-9714-9.Web of ScienceCrossrefGoogle Scholar

  • Hassan, K.M. (2009a). Rhyolite-dacite-trachyandesite association: a Mössbauer spectroscopy study. Hyperfine Interactions, 192(1-3), 101-107. DOI: 10.1007/s10751-008-9904-5.CrossrefGoogle Scholar

  • Hassan, K.M. (2009b). Characterization of granites by 57Fe Mössbauer spectroscopy. Mineralogia, 40(1-4), 95-106. DOI: 10.2478/v10002-009-0008-x.CrossrefGoogle Scholar

  • Hassan, K.M. (2010). Valences and site characteristics of iron in radioactive magmatic veins (Egypt): A Mössbauer and chemical study. Mineralogia, 41(1-2), 23-33. DOI: 10.2478/v10002-010-0003-2.CrossrefGoogle Scholar

  • Hill, R.E.T., & Roeder, P.L. (1974). The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. Journal of Geology, 82, 709-729.Google Scholar

  • Ingalls, R. (1964). Electric-field gradient tensor in ferrous compounds. Physical Review, 133(3A), 787-795. DOI: 10.1103/PhysRev.133.A787.CrossrefGoogle Scholar

  • Kress V.C., & Carmichael I.S.E. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82-92. DOI: 10.1007/BF00307328.CrossrefGoogle Scholar

  • List, F.K., El-Gaby, S., & Tehrani, R. (1989). The basement rocks in the Eastern and Western Deserts and Sinai. In M. Hermina, E., Klitzsch & S. List (Eds.), Stratigraphic lexicon and explanatory note to the geologic map of Egypt 1:500000 (pp. 33-56). Cairo, Egypt: Egyptian General Petroleum Corporation.Google Scholar

  • McCanta, C., Rutherford, M.D., Dyar, M.D., & Delaney, J.S. (2003). Fe3+/ΣFe ratios in pigeonite as a function of ƒO2: a preliminary investigation. Proceedings - 34th Lunar and Planetary Science Conference, 17-21 March 2003 (Abstract 1361). Lunar and Planetary Institute. League City, Texas, U.S.A.Google Scholar

  • Menzies, O.N., Bland, P.A., & Berry, F.J. (2001). An 57Fe Mössbauer study of the olivine solid solution series: Implications for meteorite classification and deconvolution of unequilibrated chondrite spectra. Proceedings -32nd Lunar and Planetary Science Conference, 12-16 March 2003 (Abstract 1622). Lunar and Planetary Institute. League City, Texas, U.S.A.Google Scholar

  • Morris, R.V., McKay, G.A., Agresti, D.G., & Li, L. (2008). Mössbauer and electron microprobe studies of density separates of Martian Nakhlite MIL03346: Implications for interpretation of Mössbauer spectra acquired by the Mars exploration rovers. Proceedings - 39th Lunar and Planetary Science Conference, 10-14 March 2008 (Abstract 2458). Lunar and Planetary Institute. League City, Texas, U.S.A.Google Scholar

  • O'Reilly, W. (1984). Rock and mineral magnetism. Glasgow and London/ New York: Blackie/Chapman and Hill.Google Scholar

  • Patrusheva, D.G., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., & Semionkin, V.A. (2010). 57Fe hyperfine interactions in M1 and M2 sites of olivine from Omolon meteorite: study using Mössbauer spectroscopy. Hyperfine Interactions, 197(1-3), 295-300. DOI: 10.1007/s10751-010-0188-1.CrossrefGoogle Scholar

  • Satir, M., Morteani, G., & Fuganti, A. (1991). K-Ar ages, Sr-isotopic compositions and chemistry of late Cretaceous-Tertairy basalts from the Nubian Desert (northern Sudan). European Journal of Mineralogy, 3, 943-955.Google Scholar

  • Soresu, M., Xu, T., Wise, A., Diaz-Míchelens, M., & McHenry, M.E. (2012). Studies on structural, magnetic and thermal properties of xFe2TiO4-(1−x)Fe3O4 (0≤x≤1) Pseudo-binary System. Journal of Magnetism and Magnetic Materials, 324, 1453-1462. http://dx.doi.org/10.1016/j.jmmm.2011.12.012.Google Scholar

  • Wikipedia Foundation, Inc. (2013). Ulvöspinel. Retrieved March 29, 2013, from http://en.wikipedia.org/wiki/Ulvöspinel.Google Scholar

  • Žák, T., & Jirásková, Y. (2006). Confit: Mössbauer spectra fitting program. Surface and Interface Analysis, 38(4), 710-714. DOI: 10.1002/sia.2285. CrossrefGoogle Scholar

About the article

Received: 2013-04-04

Revised: 2013-07-17

Accepted: 2013-07-30

Published Online: 2014-07-31

Published in Print: 2013-06-01

Citation Information: Mineralogia, Volume 44, Issue 1-2, Pages 3–12, ISSN (Online) 1899-8526, DOI: https://doi.org/10.2478/mipo-2013-0001.

Export Citation

© by Kamaleldin M. Hassan. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in