Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

Iron Metallurgy Slags as a Potential Source of Critical Elements - Nb, Ta and REE

Monika Kasina / Marek Michalik
Published Online: 2018-09-15 | DOI: https://doi.org/10.1515/mipo-2017-0004

Abstract

The recovery of valuable metals from metallurgical slag disposals is a promising option to protect natural resources, limited due to technology development and increased consumption. The Ad-hoc Working Group on Defining Critical Raw Materials within the Raw Materials Supply Group has proposed a list of critical elements which have the greatest economic importance and meet the requirements of sustainable development in Europe. The goal of this study was to examine steelmaking- and blast-furnace slags from metallurgical processes to determine concentrations of elements of the greatest criticality for Poland, e.g. Nb, Ta and REE, and to discuss the viability of their recovery. Slag analyses indicate enrichment of REE relative to UCC, NASC and average chondrite compositions in blast-furnace slags and Nb and Ta in steelmaking slags. To make recovery of these critical elements reasonable and profitable, it is recommended that they be recovered together with other useful raw materials.

Keywords: metallurgical slags; chemical composition; critical elements; Nb; Ta; REE

References

  • Allegrini, E., Maresca A., Olsson M. E., Holtze M. S., Boldrin, A., & Astrup, T. F. (2014). Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Management, 34, 1627-1636. DOI: 10.1016/j.wasman.2014.05.003.CrossrefGoogle Scholar

  • Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013a). Recycling of rare earths: a critical review. Journal of Cleaner Production 51, 1-22. DOI: 10.1016/j.jclepro.2012.12.037.CrossrefGoogle Scholar

  • Binnemans, K., Pontikes, Y., Jones, P. T., Van Gerven, T., & Blanpain, B. (2013b). Recovery of rare earths from industrial waste residues: a concise review. In: Malfliet, A., Jones, P. T., Binnemans, K., et al. (Eds.), Proceedings of the 3rd International Slag Valorisation Symposium, 19-30 March 2013. KU LEUVEN, Leuven, Belgium, pp. 191-205.Google Scholar

  • Bozkurt, S., Moreno, L., & Neretnieks, I. (1999). Long-term fate of organics in waste deposits and its effect on metal release. Science of the Total Environment, 228(2-3), 135-152. DOI: 10.1016/S0048-9697(99)00047-9.CrossrefGoogle Scholar

  • Cossu, R., Hogland, W., & Salerni, E. (1996). Landfill mining in Europe and the USA. ISWA Year Book 1996, 107-114.Google Scholar

  • Critical raw materials for the EU. (2010). Report of the Ad-hoc Working Group on defining critical raw materials. Raw Materials Supply Group, Brussels, June 2010.Google Scholar

  • Evans, A. M. (1993). Ore geology and industrial minerals (3rd edition). Blackwell (1993).Google Scholar

  • Geiseler, J. (1996). Use of steel works slag in Europe. Waste Management, 16, 59-63. DOI:10.1016/S0956-053X(96)00070-0.CrossrefGoogle Scholar

  • Graedel, T. E., Allwood, J., Birat, J., Buchert, M., Hagelüken, C., Reck, B. K., Sibley, S. F., & Sonnemann, G. (2011). What do we know about metal recycling rates? Journal of Industrial Ecology, 15(3), 355-366. DOI: 10.1111/j.1530-9290.2011.00342.x.CrossrefGoogle Scholar

  • Gromet, P. L., Dymek, R. F., Haskin, L. A., & Korote, R. L. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.Google Scholar

  • Gutiérrez-Gutiérrez, S. C., Coulon, F., Jiang, Y., & Wagland, S. (2015). Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities. Waste Management, 42, 128-136. DOI: 10.1016/j.wasman.2015.04.024.CrossrefGoogle Scholar

  • Hogland, W., Marques, M., & Nimmermark, S. (2004). Landfill mining and waste characterization: a strategy for remediation of contaminated areas. Journal of Material Cycles and Waste Management, 6(2), 119-124. DOI: 10.1007/s10163-003-0110-x.CrossrefGoogle Scholar

  • Jain, P., Kim, H., & Townsend, T. G. (2005). Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Management, 25, 25-35. DOI: 10.1016/j.wasman.2004.08.009.CrossrefGoogle Scholar

  • Janke, D., Savov, L., & Vogel, M. E. (2006). Secondary materials in steel production and recycling. A von Gleich et al. (eds). Sustainable Metals Management (Chapter 11), 313-334. Netherlands: Springer.Google Scholar

  • Jarosiński, A. (2016). Możliwości pozyskiwania metali ziem rzadkich w Polsce. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 92, 75-88. [in Polish].Google Scholar

  • Jonczy, I. (2014). Mineralogical and chemical study of metallurgical slags from the dump and current production in Gliwice-Łabędy as well as the dump influence on soil. Gliwice 2014. [in Polish].Google Scholar

  • Jonczy, I., & Lata, L. (2013). Charakterystyka składu chemicznego żużli konwertorowych i wielkopiecowych. Górnictwo i Geologia, 8(4), 51-61. [in Polish].Google Scholar

  • Juenger, M. C. G., Monteiro, P. J. M., & Gartner, E. M. (2006). In situ imaging of ground granulated blast furnace slag hydratation. Journal of Material Science, 41, 7074-7081. DOI: 10.1007/s10853-006-0941-7.CrossrefGoogle Scholar

  • Kasina, M., Kowalski, P. R., & Michalik, M. (2014). Mineral carbonation of metallurgical slags. Mineralogia, 45(1-2), 27-45. DOI: 10.1515/mipo-2015-0002.CrossrefGoogle Scholar

  • Kawasaki, A., Kimura, R., & Arai, S. (1998). Rare earth elements and other trace elements in wastewater treatment sludges. Soil Science and Plant Nutrition, 44(3), 433-441. DOI: 10.1080/00380768.1998.10414465.CrossrefGoogle Scholar

  • Kelmendi, S., & Azemi, F. (2011). Comparative economic elements of mineral resources in the context of international management. Journal of economic and politics of Transition. Transition - ISSN 1512-5785.Google Scholar

  • Kulczycka, J., Kowalski, Z., Smol, M., & Wirth, H. (2016). Evaluation of the recovery of Rare Earth Elements (REE) from phosphogypsum waste ̶ case study of the WIZ_OW Chemical Plant (Poland). Journal of Cleaner Production, 113, 345-354. DOI: 10.1016/j.jclepro.2015.11.039.CrossrefGoogle Scholar

  • Lie, A., & Østergaard, C. (2014). The Fen Rare Earth Element deposit, Ulefoss, South Norway. Executive summary regarding deposit significance Compiled and prepared by 21st North, Svendborg 6th of June 2014 in commission for REE Minerals, Norway.Google Scholar

  • Liu Y., & Naidu R. (2014). Hidden values in bauxite residue (red mud): Recovery of metals. Waste Management, 34, 2662-2673. DOI: 10.1016/j.wasman.2014.09.003.CrossrefGoogle Scholar

  • Małoszowski, M. (2009). Mineral and chemical composition of metallurgical slags from Kuźnice and their effect on environment [in Polish]. Master Thesis, Jagiellonian University.Google Scholar

  • Massari, M., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38, 36-43. DOI: 10.1016/j.resourpol.2012.07.001.CrossrefGoogle Scholar

  • Meyer, L., & Bras, B. (2011). Rare earth metal recycling, 2011. IEEE International Symposium on Sustainable Systems and Technology, ISSST 2011, 16 May 2011 through 18 May 2011, Chicago, IL. Morf, L. S., Gloor, R.,Google Scholar

  • Haag, O., Haupt, M., Skutan, S., Lorenzo, F. D., & Böni, D. (2013). Precious metals and rare earth elements in municipal solid waste - Sources and fate in a Swiss incineration plant. Waste Management, 33(3), 634-644. DOI: 10.1016/j.wasman.2012.09.010.CrossrefGoogle Scholar

  • Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21, 285-293. DOI: 10.1016/S0956-053X(00)00102-1.CrossrefGoogle Scholar

  • Mueller, S.R., Wäger, P. A., Widmer, R., & Williams, I. D. (2015). A geological reconnaissance of electrical and electronic waste as a source for rare earth metals. Waste Management, 45, 226-234. DOI: 10.1016/j.wasman.2015.03.038.CrossrefGoogle Scholar

  • Quaghebeur, M., Laenen, B., Nielsen, P., Spooren, J. & Geysen, D. (2010). Valorisation of materials within enhanced landfill mining: What is feasible? In the context of the transition to Sustainable Materials Management (SMM) and Enhanced Waste Management (EWM), Belgium, 4-6 October 2010.Google Scholar

  • Report on critical raw materials for the EU. (2014). Report of the Ad-hoc Working Group on defining critical raw materials, May 2014.Google Scholar

  • Statistical yearbook of the Republic of Poland 2014. (2014). Central Statistical Office. ISSN 1506-0632.Google Scholar

  • Schmidt, R. A., Smith, R. H., Lasch, J. E., Mosen, A. W., Olehy, D. A., & Vasilevshis, J. (1963). Abundances of Fourteen Rare-Earth Elements, Scandium, and Yttrium in Meteoritic and Terrigenous Matter. Geochimica et Cosmochimica Acta, 27(6), 577-622. DOI: 10.1016/0016-7037(63)90014-0.CrossrefGoogle Scholar

  • Schulze, R., & Buchert, M. (2016). Estimates of global REE recycling potentials from NdFeB magnet material. Resources, Conservation and Recycling, 113, 12-27. DOI: 10.1016/j.resconrec.2016.05.004.CrossrefGoogle Scholar

  • Silberglitt, R., Bartis, J. T., Chow, B. G., An, D. L., & Brady, K. (2013). Critical Materials. Present Danger to U.S. Manufacturing. Library of Congress Cataloging-in-Publication. RAND Corporation. ISBN: 978-0-8330-7883-4.Google Scholar

  • Smakowski, T. J. (2011). Surowce mineralne - krytyczne czy deficytowe dla gospodarki UE i Polski. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energi Polskiej Akademii Nauk, 81, 59-68. [in Polish].Google Scholar

  • Sommer P., Rotter V.S., & Ueberschaar, M. (2015). Battery related cobalt and REE flows in WEEE treatment. Waste Management, 45, 298-305. DOI: 10.1016/j.wasman.2015.05.009.CrossrefGoogle Scholar

  • Taylor, S. R., & McLennan S. M. (1985). The Continental Crust: Its Composition and Evolution. Oxford, UK: Blackwell Scientific Publications.Google Scholar

  • Van der Zee, D. J., Achterkamp, M. C., & de Visser, B. J. (2004). Assessing the market opportunities of landfill mining. Waste Management, 24, 795-804. DOI: 10.1016/j.wasman.2004.05.004.CrossrefGoogle Scholar

  • Zhang, F., Yamasaki, S., & Kimura, K. (2001). Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environment International, 27(5), 393-398. DOI: 10.1016/S0160-4120(01)00097-6.CrossrefGoogle Scholar

  • Zimmermann, T., & Gößling-Reisemann, S. (2013). Critical materials and dissipative losses: A screening study. Science of the Total Environment, 461-462, 774-780. DOI: 10.1016/j.scitotenv.2013.05.040.CrossrefGoogle Scholar

About the article

Received: 2016-12-27

Accepted: 2017-10-10

Published Online: 2018-09-15

Published in Print: 2018-09-01


Citation Information: Mineralogia, Volume 47, Issue 1-4, Pages 15–28, ISSN (Online) 1899-8526, DOI: https://doi.org/10.1515/mipo-2017-0004.

Export Citation

© 2018 Monika Kasina, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in