Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

Optimization of Novel Sorbents for CO2Removal Based on FTIR and TG Analysis

Anna Majchrzak / Wojciech Nowak
  • Department of Thermal and Fluid Flow Machine, Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-15 | DOI: https://doi.org/10.1515/mipo-2017-0011

Abstract

Adsorption is considered as one of the most promising technologies for CCS. Gas adsorption involves the separation of gaseous components from flue gas using solid adsorbents. The gaseous component, adsorbate, is adsorbed from the gas phase on a solid material. Regarding CO2adsorption, it is important to consider the parameters, that is the high sorption capacity, CO2selectivity, regeneration and stability in multiple cycles. New directions for the development of adsorbents are focused on increasing their capacity - for this purpose, amine impregnation is carried out. This paper presents a new approach to obtaining mesoporous material from fly ash and, based on this, a new physico-chemical adsorbent obtained by impregnation. The effectiveness of the process was confirmed by thermogravimetric analysis and FTIR infrared spectroscopy.

Keywords: CO2 adsorbent; FTIR; TGA; CO2 removal; CCS

References

  • Ho, M.T., Allinson, G.W., & Wiley, D.E. (2008). Reducing the cost of CO2capture from flue gases using pressure swing adsorption. Industrial and engineering chemistry research 47(14), 4883-4890. DOI: 10.1021/ie070831e.CrossrefGoogle Scholar

  • Kumar, P., Mal, N., Oumi, Y., Yamana, K., & Sano, T. (2001). Mesoporous materials prepared using coal fly ash as the silicon and aluminium source. Journal of Materials Chemistry 11, 3285-3290. DOI: 10.1039/B104810B.CrossrefGoogle Scholar

  • Majchrzak, A., & Majchrzak - Kucęba, I. (2013). Study of sorption capacity on various types of adsorbents depending on the temperature and CO2 content. In International Conference on Environment & Energy, 16 -17 December 2013 (pp. 220-234). Colombo, Sri Lanka: International Centre for Research and Development.Google Scholar

  • Majchrzak, A., & Nowak, W. (2017). Separation characteristics as a selection criteria of CO2adsorbents. Journal of CO2Utilization 17, 69-79. DOI: 10.1016/S2212-9820(17)30019-7.CrossrefGoogle Scholar

  • Morrison, R. T., & Boyd, R. N. (1985). Chemia organiczna Tom 1, Warszawa: Państwowe Wydawnictwo Naukowe. [in Polish]Google Scholar

  • Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2012). Spektroskopowe metody identyfikacji związków organicznych, Warszawa: Wydawnictwo Naukowe PWN. [in Polish]Google Scholar

  • Son, W-J., Choi, J-S., & Ahn, W-S. (2008). Adsorptive removal of carbon dioxide using polyethylenimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials 113(1-3), 31-40. DOI: 10.1016/j.micromeso.2007.10.049.CrossrefGoogle Scholar

  • Xu, X., Song, C., Andrésen, J. M., Miller, B. G., & Scaroni, A. W. (2003). Preparation and characterization of novel CO2“molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Miroporous and Mesoporous Materials 62(1-2), 29-45. DOI: 10.1016/S1387-1811(03)00388-3.CrossrefGoogle Scholar

  • Xu, X., Song, C., Miller, B. G., & Scaroni, A. W. (2005). Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by novel nanoporous “molecular basket” adsorbent. Fuel Processing Technology 86(14-15), 1457-1472. DOI: 10.1016/j.fuproc.2005.01.002.CrossrefGoogle Scholar

  • Yang, Q., Guillerm, V., Ragon, F., Wiersum, A. D., Llewellyn, P. L., Zhong, C., Devic, T., Serrec, C., & Maurin, G. (2012). CH4storage and CO2capture in highly porous zirconium oxide based metal-organic frameworks. Chemical Communications 48, 9831-9833. DOI: 10.1039/C2CC34714H.CrossrefGoogle Scholar

About the article

Received: 2017-04-30

Accepted: 2017-08-26

Published Online: 2018-09-15

Published in Print: 2016-12-01


Citation Information: Mineralogia, Volume 48, Issue 1-4, Pages 47–62, ISSN (Online) 1899-8526, DOI: https://doi.org/10.1515/mipo-2017-0011.

Export Citation

© 2018 Anna Majchrzak, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in