Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Open Access
See all formats and pricing
More options …

Halloysite Composites with Fe3O4Particles: The Effect of Impregnation on the Removal of Aqueous Cd(II) And Pb(II)

Paulina Maziarz
  • Corresponding author
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jakub Matusik
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-15 | DOI: https://doi.org/10.1515/mipo-2017-0014


In this study, halloysite-Fe3O4composites were synthesized by a chemical-precipitation method to facilitate magnetic separation of the sorbents from aqueous solution. The research focused on the effect of Fe3O4phase on the halloysite sorption properties. The X-ray diffraction (XRD) results confirmed successful deposition of Fe3O4particles on a halloysite surface. They showed that the coating with Fe3O4particles enhanced the halloysite adsorption affinity toward Cd(II) and Pb(II). The highest adsorption capacity was determined for the composites having 10% of the surface deposited with Fe3O4. In this case, the adsorption capacity for Cd(II) and Pb(II) was 33 and 112 mmol·kg-1, respectively. The point of zero charge (pHPZC) and desorption results indicated that the removal mechanism of metals is mainly related to chemisorption involving reaction with hydroxyls of either halloysite or Fe3O4phase. The ion exchange is of limited importance due to the low cation exchange capacity (CEC) of halloysite - Fe3O4composites.

Keywords: Fe3O4 particles; Halloysite; Adsorption; Cd(II); Pb(II)


  • Amjadi, M., Samadi, A., & Manzoori, J. L. (2015). A composite prepared from halloysite nanotubes and magnetite (Fe3O4) as a new magnetic sorbent for the preconcentration of cadmium(II) prior to its determination by flame atomic absorption spectrometry. Microchimica Acta. 182(9-10), 1627-1633. DOI:10.1007/s00604-015-1491-y.CrossrefGoogle Scholar

  • Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A., & Solanki, P. R. (2016). Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. Journal of Environmental Chemical Engineering. 4(4), 4237-4247. DOI: 10.1016/j.jece.2016.09.026.CrossrefGoogle Scholar

  • Bajda, T., Szala, B., & Solecka, U. (2015). Removal of lead and phosphate ions from aqueous solutions by organo-smectite. Environmental Technology. 36(22), 2872-2883. DOI: 10.1080/09593330.2015.1051135.CrossrefGoogle Scholar

  • Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K., & Matis, K. A. (2003). Hybrid flotation- membrane filtration process for the removal of heavy metal ions from wastewater. Water Research. 37(16), 4018-4026. DOI: 10.1016/s0043-1354(03)00314-2.CrossrefGoogle Scholar

  • Dąbrowski, A., Hubicki, Z., Poskościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 56, 91-106. DOI: 10.1016/j.chemosphere.2004.03.006.CrossrefGoogle Scholar

  • Duan, J., Liu, R., Chen, T., Zhang, B., & Liu, J. (2012). Halloysite nanotube-Fe3O4composite for removal of methyl violet from aqueous solutions. Desalination. 293, 46-52. DOI: 10.1016/j.desal.2012.02.022.CrossrefGoogle Scholar

  • Dubinin, M. M. (1960). The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chemical Reviews. 60(2), 235-241. DOI: 10.1021/cr60204a006.CrossrefGoogle Scholar

  • Ebrahim, S. E., Sulaymon, A. H., & Saad Alhares, H. (2015). Competitive removal of Cu2+, Cd2+, Zn2+, and Ni2+ions onto iron oxide nanoparticles from wastewater. Desalination and Water Treatment. 57(44), 20915-20929. DOI: 10.1080/19443994.2015.1112310.CrossrefGoogle Scholar

  • Elkamash, A., Zaki, A., & Elgeleel, M. (2005). Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. Journal of Hazardous Materials. 127(1-3), 211-220. DOI: 10.1016/j.jhazmat.2005.07.021.CrossrefGoogle Scholar

  • Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie. 57A, 385-470.Google Scholar

  • Fu, R., Wang, W., Han, R., & Chen, K. (2008). Preparation and characterization of γ-Fe2O3/ZnO composite particles. Materials Letters. 62(25), 4066-4068. DOI: 10.1016/j.matlet.2008.05.006.CrossrefGoogle Scholar

  • Ghasemi, E., Heydari, A., & Sillanpää, M. (2017). Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchemical Journal. 131, 51-56. DOI: 10.1016/j.microc.2016.11.011.CrossrefGoogle Scholar

  • Hashemian, S., Saffari, H., & Ragabion, S. (2014). Adsorption of Cobalt(II) from Aqueous Solutions by Fe3O4/Bentonite Nanocomposite. Water, Air, & Soil Pollution. 226(1). DOI: 10.1007/s11270-014-2212-6.CrossrefGoogle Scholar

  • Hosseinzadeh, M., Ebrahimi, S. A. S., Raygan, S., & Masoudpanah, S. M. (2016). Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation. Journal of Ultrafine Grained and Nanostructured Materials. 49(2), 72-79. DOI: 10.7508.jufgnsm/2016.02.03.Google Scholar

  • Iyengar, S. J., Joy, M., Ghosh, C. H., Dey, S., Kotnala, R. K., & Ghosh, S. (2014). Magnetic, X-ray and Mössbauer studies on Magnetite/Maghemite Core-Shell Nanostructures Fabricated through Aqueous Route. RSC Advances. 4(110), 64919-64929. DOI: 10.1039/b000000x.CrossrefGoogle Scholar

  • Jiang, M.-q., Jin, X.-y., Lu, X.-Q., & Chen, Z.-l. (2010). Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 252(1-3), 33-39. DOI: 10.1016/j.desal.2009.11.005.CrossrefGoogle Scholar

  • Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., & Delvaux, B. (2005). Halloysite clay minerals - a review. Clay Minerals. 40, 383-426. DOI: 10.1180/0009855054040180.CrossrefGoogle Scholar

  • Karimzadeh, I., Aghazadeh, M., Ganjali, M. R., Doroudi, T., & Kolivand, P. H. (2017). Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route. Journal of Magnetism and Magnetic Materials. 433, 148-154. DOI: 10.1016/j.jmmm.2017.02.048.CrossrefGoogle Scholar

  • Kharissova, O. V., Dias, H. V. R., & Kharisov, B. I. (2015). Magnetic adsorbents based on micro- and nanostructured materials. RSC Adv. 5(9), 6695-6719. DOI: 10.1039/c4ra11423j.CrossrefGoogle Scholar

  • Koteja, A., & Matusik, J. (2015). Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals. Journal of Colloid and Interface Science. 455, 83-92. DOI: 10.1016/j.jcis.2015.05.027.CrossrefGoogle Scholar

  • Kumari, M., Pittman, C. U., & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science. 442, 120-132. DOI: 10.1016/j.jcis.2014.09.012.CrossrefGoogle Scholar

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38, 2221-2295. DOI: 10.1021/ja02254a006.CrossrefGoogle Scholar

  • Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials. 356, 21-31. DOI: 10.1016/j.jmmm.2013.12.008.CrossrefGoogle Scholar

  • Magnacca, G., Allera, A., Montoneri, E., Celi, L., Benito, D. E., Gagliardi, L. G., Gonzalez, M. C., Mártire, D. O., & Carlos, L. (2014). Novel Magnetite Nanoparticles Coated with Waste-Sourced Biobased Substances as Sustainable and Renewable Adsorbing Materials. ACS Sustainable Chemistry & Engineering. 2(6), 1518-1524. DOI: 10.1021/sc500213j.CrossrefGoogle Scholar

  • Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of heavy metals from acid mine drainage. Water Research. 36, 4757-4764. DOI: 10.1016/S0043-1354(02)00149-5.CrossrefGoogle Scholar

  • Matusik, J. (2010).Minerały z grupy kaolinitu jako prekursory nanorurek mineralnych (Kaolin group minerals as precursors of mineral nanotube). PhD thesis, AGH University of Science and Technology, Krakow, 174 pp. [in Polish].Google Scholar

  • Matusik, J. (2016). Halloysite for Adsorption and Pollution Remediation. In Yuan, Thill & Faiza, Nanosized Tubular Clay Minerals (606-627). Elsevier.Google Scholar

  • Matusik, J., & Wścisło, A. (2014). Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols. Applied Clay Science. 100, 50-59. DOI: 10.1016/j.clay.2014.06.034.CrossrefGoogle Scholar

  • Maziarz, P., & Matusik, J. (2016). The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(II), Cd(II), Zn(II) and As(V) uptake. Clay Minerals. 51(3), 385-394. DOI: 10.1180/claymin.2016.051.3.06.CrossrefGoogle Scholar

  • Mehta, D., Mazumdar, S., & Singh, S. K. (2015). Magnetic adsorbents for the treatment of water/wastewater-A review. Journal of Water Process Engineering. 7, 244-265. DOI: 10.1016/j.jwpe.2015.07.001.CrossrefGoogle Scholar

  • Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2011). Kinetic studies of the removal of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing. 101(1-4), 42-49. DOI: 10.1016/j.minpro.2011.07.004.CrossrefGoogle Scholar

  • Nightingale, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. Journal of Physical Chemistry. 63, 1381-1387. DOI: 10.1021/j150579a011.CrossrefGoogle Scholar

  • Oliveira, L. C. A., Rios, R. V. R. A., Fabris, J. D., Sapag, K., Garg, V. K., & Lago, R. M. (2003). Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science. 22(4), 169-177. DOI: 10.1016/s0169-1317(02)00156-4.CrossrefGoogle Scholar

  • Ozaki, H., Sharmab, K., & Saktaywirf, W. (2002). Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination. 144, 287-294. DOI: 10.1016/S0011-9164(02)00329-6.CrossrefGoogle Scholar

  • Papoulis, D., Komarneni, S., Nikolopoulou, A., Tsolis-Katagas, P., Panagiotaras, D., Kacandes, H. G., Zhang, P., Yin, S., Sato, T., & Katsuki, H. (2010). Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity. Applied Clay Science. 50(1), 118-124. DOI: 10.1016/j.clay.2010.07.013.CrossrefGoogle Scholar

  • Rajput, S., Pittman, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science. 468, 334-346. DOI: 10.1016/j.jcis.2015.12.008.CrossrefGoogle Scholar

  • Rendon, J. L., & Serna, C. J. (1981). IR Spectra Of Powder Hematite: Effects Of Particle Size And Shape. Clay Minerals. 16(4), 375-381.Google Scholar

  • Rodulfo-Baechler, S. M., González-Cortés, S. L., Orozco, J., Sagredo, V., Fontal, B., Mora, A. J., & Delgado, G. (2004). Characterization of modified iron catalysts by X-ray diffraction, infrared spectroscopy, magnetic susceptibility and thermogravimetric analysis. Materials Letters. 58(20), 2447-2450. DOI: 10.1016/j.matlet.2004.02.032.CrossrefGoogle Scholar

  • Rouxhet, P. G., Samudacheata, N., Jacobs, H., & Anton, O. (1977). Attribution Of The OH Stretching Bands Of Kaolinite. Clay Minerals. 12, 171-179. DOI: 10.1180/claymin.1977.012.02.07CrossrefGoogle Scholar

  • Rzepa, G., Bajda, T., & Ratajczak, T. (2009). Utilization of bog iron ores as sorbents of heavy metals. Journal of Hazardous Materials. 162(2-3), 1007-1013. DOI: 10.1016/j.jhazmat.2008.05.135.CrossrefGoogle Scholar

  • Silva, V. A. J., Andrade, P. L., Silva, M. P. C., Bustamante D, A., De Los Santos Valladares, L., & Albino Aguiar, J. (2013). Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. Journal of Magnetism and Magnetic Materials. 343, 138-143. DOI :10.1016/j.jmmm.2013.04.062.CrossrefGoogle Scholar

  • Smičiklas, I. D., Milonjić, S. K., Pfendt, P., & Raičević, S. (2000). The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Separation and Purification Technology. 18(3), 185-194. DOI: 10.1016/s1383-5866(99)00066-0.CrossrefGoogle Scholar

  • Theng, B. K. G., Russel, M., Churchman, G. J., & Parfitt, R. L. (1982). Surface Properties Of Allophane, Halloysite, And Imogolite. Clays and Clay Minerals. 30(2), 143-149. DOI: 10.1346/CCMN.1982.0300209.CrossrefGoogle Scholar

  • Tian, X., Wang, W., Tian, N., Zhou, C., Yang, C., & Komarneni, S. (2016). Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid. Journal of Hazardous Materials. 309, 151-156. DOI: 10.1016/j.jhazmat.2016.01.081.CrossrefGoogle Scholar

  • Unuabonah, E. I., Adebowale, K. O., Olu-Owolabi, B. I., Yang, L. Z., & Kong, L. X. (2008). Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: Equilibrium and thermodynamic studies. Hydrometallurgy. 93(1-2), 1-9. DOI: 10.1016/j.hydromet.2008.02.009.CrossrefGoogle Scholar

  • Wang, C. Y., Hong, J. M., Chen, G., Zhang, Y., & Gu, N. (2010). Facile method to synthesize oleic acid-capped magnetite nanoparticles. Chinese Chemical Letters. 21(2), 179-182. DOI: 10.1016/j.cclet.2009.10.024.CrossrefGoogle Scholar

  • Wang, L., Cheng, C., Tapas, S., Lei, J., Matsuoka, M., Zhang, J., & Zhang, F. (2015). Carbon dots modified mesoporous organosilica as an adsorbent for the removal of 2,4- dichlorophenol and heavy metal ions. Journal of Materials Chemistry A. 3, 13357-13364. DOI: 10.1039/c5ta01652e.CrossrefGoogle Scholar

  • Wang, R., Jiang, G., Ding, Y., Wang, Y., Sun, X., Wang, X., & Chen, W. (2011). Photocatalytic Activity of Heterostructures Based on TiO2 and Halloysite Nanotubes. ACS Applied Materials & Interfaces. 3(10), 4154-4158. DOI: 10.1021/am201020q.CrossrefGoogle Scholar

  • Xie, Y., Qian, D., Wu, D., & Ma, X. (2011). Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chemical Engineering Journal. 168(2), 959-963. DOI: 10.1016/j.cej.2011.02.031.CrossrefGoogle Scholar

  • Xu, D., Tan, X., Chen, C., & Wang, X. (2008). Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials. 154(1-3), 407-416. DOI: 10.1016/j.jhazmat.2007.10.059.CrossrefGoogle Scholar

  • Yantasee, W., Warner, C. L., Sangvanich, T., Addleman, R. S., Carter, T. G., Wiacek, R., Fryxell, G. E., Timchalk, C., & Warner, M. G. (2007). Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Environmental Science & Technology. 41(14), 5114-5119. DOI: 10.1021/es0705238.CrossrefGoogle Scholar

  • Zhang, S. Q., & Hou, W. G. (2008). Adsorption behavior of Pb(II) on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 320(1-3), 92-97. DOI: 10.1016/j.colsurfa.2008.01.038.CrossrefGoogle Scholar

  • Zhang, Z., & Kong, J. (2011). Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. Journal of Hazardous Materials. 193, 325-329. DOI: 10.1016/j.jhazmat.2011.07.033.CrossrefGoogle Scholar

About the article

Received: 2017-04-03

Accepted: 2017-08-29

Published Online: 2018-09-15

Published in Print: 2016-12-01

Citation Information: Mineralogia, Volume 48, Issue 1-4, Pages 107–126, ISSN (Online) 1899-8526, DOI: https://doi.org/10.1515/mipo-2017-0014.

Export Citation

© 2018 Paulina Maziarz, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ioannis Anastopoulos, Alok Mittal, Muhammad Usman, Jyoti Mittal, Guanghui Yu, Avelino Núñez-Delgado, and Michael Kornaros
Journal of Molecular Liquids, 2018, Volume 269, Page 855
Klaudia Debiec, Grzegorz Rzepa, Tomasz Bajda, Witold Uhrynowski, Aleksandra Sklodowska, Jan Krzysztoforski, and Lukasz Drewniak
Frontiers in Chemistry, 2018, Volume 6

Comments (0)

Please log in or register to comment.
Log in