Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

Characteristics of Sorbent Products Obtained by the Alkaline Activation of Waste from Waste Incineration Plants

Agnieszka Grela
  • Corresponding author
  • Cracow University of Technology, Faculty of Environmental Engineering, Institute of Engineering and Water Management, Warszawska 24, Cracow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michał Łach
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Materials Engineering, 37 Jana Pawła II Av., Cracow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Bajda
  • AGH University of Science and Technology in Cracow, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, 30 Mickiewicza Av., Cracow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janusz Mikuła
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Materials Engineering, 37 Jana Pawła II Av., Cracow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-15 | DOI: https://doi.org/10.1515/mipo-2017-0015

Abstract

In Poland, by 2020 430,000 Mg of hazardous waste will be formed annually by the combustion of waste. This waste must be properly managed so as not to endanger the environment. One promising way to manage selected waste is to process it in the synthesis of materials characterised by sorption properties. The results presented in this paper concern the possibility of producing sorbents from waste materials marked with codes 190112 and 190114, which came from two waste incineration plants in Poland. Alkaline activation was performed using two methods: a) hydrothermal, in a solution of 8 M NaOH at 75°C for 24 h; and b) in an autoclave, using a solution of 2 M NaOH at 140°C for 6 h. XRD analyses led to the identification of materials after synthesis of the following zeolite phases: analcime, chabazite and thomsonite. chabazite and analcime can be valuable absorbent materials.

Keywords: alkali-activated; ash and slag from waste incineration

References

  • Aiello, R., Giordano, G., & Testa, F. (2002). Impact of zeolites and other porous materials on the new technologies at the beginning of the new millennium; Elsevier Science.Google Scholar

  • Armbruster, T., & Gunter, M. E. (2001). Crystal structures of natural zeolites. In D.L. Bish & D.W. Ming (Eds) Natural Zeolites: Occurrence, Properties, Applications. Washington, D.C., pp.1-67. Reviews in Mineralogy and Geochemistry.Google Scholar

  • Belviso, C., Cavalcante, F., & Fiore, S. (2010). Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using sea water instead of distilled water. Waste Management, 30(5), 839-847. DOI: 10.1016/j.wasman.2009.11.015.CrossrefGoogle Scholar

  • Chang, K. L., & Shih, W. H. (1998). A general method for the conversion of fly ash into Zeolites as ion exchangers for cesium. Industrial & Engineering Chemistry Research, 37(1), 71-78. DOI: 10.1021/ie970362o.CrossrefGoogle Scholar

  • Charles, H. K. Lam, Alvin, W. M. Ip., Barford, J. P., & McKay, G. (2010). Use of Incineration MSW Ash: A Review. Sustainability, 2, 1943-1968. DOI:10.3390/su2071943.CrossrefGoogle Scholar

  • Chiang, Y. W., Ghyselbrecht K., Santos, R. M., Meesschaert, B., & Martens, J. A. (2012). Synthesis of zeolitictype adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catalysis Today, 190(1), 23-30. DOI: 10.1016/j.cattod.2011.11.002.CrossrefGoogle Scholar

  • Chica, A. (2013). Zeolites: Promised Materials for the Sustainable Production of Hydrogen. ISRN Chemical Engineering, DOI: 10.1155/2013/907425.CrossrefGoogle Scholar

  • Derkowski, A., Franus, W., Beran, E., & Czimerova, A. (2006). Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166, 47-54. DOI: 10.1016/j.powtec.2006.05.004.CrossrefGoogle Scholar

  • Fotovat, F., Kazemian, H., & Kazemeini, M. (2009). Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Materials Research Bulletin, 44(2), 913-917. DOI: 10.1016/j.materresbull.2008.08.008.CrossrefGoogle Scholar

  • Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186, 5721-5729. DOI: 10.1007/s10661-014-3815-5.CrossrefGoogle Scholar

  • Grela, A., Łach, M., Mikuła, J., & Hebda, M. (2016 a). Thermal analysis of the products of alkali activation of fly ash from CFB boilers. Journal of Thermal Analysis and Calorimetry, 123(2), 1609-1621. DOI: 10.1007/s10973-016-5257-5.CrossrefGoogle Scholar

  • Grela, A., Hebda, M., Łach, M., & Mikuła, J. (2016 b). Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash. Microporous and Mesoporous Materials, 220, 155-162. DOI: 110.1016/j.micromeso.2015.08.036.Google Scholar

  • Grela, A., & Bajda, T., (2017). Usuwanie wybranych związków biogennych z roztworów wodnych z wykorzystaniem metakaolniu i zmodyfikowanego metakaolinu. Inżynieria Ekologiczna, 18(2), 30-38. DOI: 10.12912/23920629/68339.Google Scholar

  • Gupta, V. K., Ali, I., Saini, V.K, Van Gerven. T., Van Bruggen, B. D., & Vandecasteele, C. (2005). Removal of dyes from wastewater using bottom ash. Industrial & Engineering Chemistry Research, 44(10), 3655-3664. DOI: 10.1021/ie0500220.Google Scholar

  • Hollman, G. C., Steenbruggen, G., & Janssen-Jurkovicova, M. (1999). A two step process for the synthesis of zeolites from coal fly ash. Fuel, 78 (10), 1225-123. DOI: 10.1016/S0016-2361(99)00030-7.Google Scholar

  • Inada, M., Eguchi, Y., Enomoto, N., & Hojo, J. (2005). Synthesis of zeolite from coal fly ashes with different silica-alumina composition. Fuel, 84 (2-3), 299-304. DOI: 10.1016/j.fuel.2004.08.012.CrossrefGoogle Scholar

  • Łach, M., Mikuła, J., & Hebda, M. (2016). Thermal analysis of the by-products of waste combustion. Journal of Thermal Analysis and Calorimetry, 125(3), 1035-1045. DOI: 10.1007/s10973-016-5512-9.CrossrefGoogle Scholar

  • Łącka-Matusiewicz, M., &Fraś, K. (2012), Wpływ zagospodarowania ubocznych produktów spalania węgla na redukcję emisji CO2 do środowiska [w:] Popioły z energetyki. XI Międzynarodowa Konferencja pt. „Popioły z Energetyki". (red.) Szczygielski T., 19, 131-150.Google Scholar

  • Miyake, M., Tamura, Ch., & Matsuda, M. (2002). Resource Recovery of Waste Incineration Fly Ash: Synthesis of Zeolites A and P. Journal of the American Ceramic Society, 85(7), 1873-75. DOI: 10.1111/j.1151-2916.2002.tb00368.x.CrossrefGoogle Scholar

  • Morency, J. R., Panagiotou, T., & Senior, C. L. (2002). Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation, 39(7), 24-26. DOI: 10.1016/S0015-1882(02)80207-5.CrossrefGoogle Scholar

  • Pająk, T. (1996). Dioksyny w procesie spalania odpadów komunalnych - zagrożenia, normy, aktualna sytuacja, przeciwdziałanie. Rocznik Państwoweg Zakładu Higieny,47(1), 105-119. Querol, X., Alastuey, A., Fernandez-Turiel, J. L., & Lopez-Soler, A. Synthesis of zeolites by alcaline activation of ferro-aluminous fly ash. Fuel, 74(8), 1226-1231.Google Scholar

  • Rodziewicz, J., Mielcarek, A., Kłodowska, I., Janczukowicz, W., Choińska-Żurek, E., & Wolter A. (2016). Usuwanie fosforu na filtrach z wypełnieniem z granulatu z popiołów ze spalania osadów ściekowych. Inżynieria Ekologiczna, 48, 186-190. DOI: 10.12912/23920629/63273.Google Scholar

  • Sallam, M., Carnahan, R. P., Zayed, A., & Sunol, S. (2008). Recycling of Municipal Solid Waste Ash through an Innovative Technology to Produce Commercial Zeolite material of High Cation Exchange Capacity, Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference May 19-21, 2008, Philadelphia, Pennsylvania, USA. DOI: 10.1115/NAWTEC16-1919.CrossrefGoogle Scholar

  • Shim, Y. S., Kim, Y. K., Kong, S. H., Rhee, S. W., & Lee, W. K. (2003). The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Management, 23(9), 851-857. DOI: 10.1016/S0956-053X(02)00163-0.CrossrefGoogle Scholar

  • Tamura, Ch., Matsuda, M., & Miyake, M. (2006). Conversion of Waste Incineration Fly Ash into Zeolite A and Zeolite P by Hydrothermal Treatment. Journal of the Ceramic Society of Japan, 114(2), 205-209. DOI: 10.2109/jcersj.114.205.CrossrefGoogle Scholar

  • Tao, Y., Kanoh, H., Abrams, L., & Kaneko, K. (2006). Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews , 106(3), 896-910. DOI: 10.1021/cr040204o.CrossrefGoogle Scholar

  • Wdowin, M., Franus, W., & Panek, R. (2012). Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin, 21(12), 3726-3734.Google Scholar

  • Wdowin, M., Wiatros-Motyka, M., Panek, R., Stevens L. A., Franus W., & Snape C. E. (2014). Experimental study of mercury removal from exhaust gases. Fuel, 128, 451-457. DOI: 10.1016/j.fuel.2014.03.041.CrossrefGoogle Scholar

  • Wielgosiński, G., & Naniecińska, O. (2016). Spalanie odpadów komunalnych - perspektywa roku 2020. Nowa Energia, 2, 1-15.Google Scholar

  • Yang, G. C., & Yang, T. Y. (1998). Synthesis of zeolites from municipal incinerator fly ash. Journal of Hazardous Materials, 62, 75-89. DOI: 10.1016/S0304-3894(98)00163-0.CrossrefGoogle Scholar

About the article

Received: 2017-04-20

Accepted: 2017-08-30

Published Online: 2018-09-15

Published in Print: 2016-12-01


Citation Information: Mineralogia, Volume 48, Issue 1-4, Pages 87–105, ISSN (Online) 1899-8526, DOI: https://doi.org/10.1515/mipo-2017-0015.

Export Citation

© 2018 Agnieszka Grela, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in