Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Open Access
See all formats and pricing
More options …

Assessment of Heavy Metals Inactivation in Contaminated Soil by Coal Fly and Bottom Ashes

Jean Diatta
  • Corresponding author
  • Poznan University of Life Sciences, Department of Agricultural Chemistry and Environmental Biogeochemistry, ul. Wojska Polskiego, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward Fojcik / Leszek Drobek
  • Central Mining Institute, Department of Environment Monitoring, Plac Gwarków 1, Katowice, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Spiżewski
  • Poznan University of Life Science, Department of Vegetable Crops, Poznań University of Life Sciences, Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Włodzimierz Krzesiński
  • Poznan University of Life Science, Department of Vegetable Crops, Poznań University of Life Sciences, Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-01 | DOI: https://doi.org/10.1515/mipo-2017-0016


The study compared coal fly and bottom ashes for their ability to inactivate metals and lead to soil remediation. Soil was artificially contaminated with Cu, Zn, Pb and Cd at five degrees. Next, both ashes were added at five rates: 0, 0.5, 1.0, 1.5 and 2.0% and all treatments incubated. Data showed that for moderately contaminated soils, ash rates of 0.5 - 1.0% were efficient from 40 to 70% for Zn and Cd, and raised markedly to between 70 and 93% for Cu and Pb. For extremely contaminated soils, the rates of ashes at 1.0, 1.5 and 2% were much more efficient (60 - 80%). The use of fly and bottom ashes for metal inactivation and soil remediation should give greater consideration to the effect of pH and the type of heavy metals than the content of SiO2and Al2O3. Fly ash displayed superior inactivation and remediation effects to the bottom ash.

Keywords: Fly ash; bottom ash; soil; heavy metals; inactivation; remediation


  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121-142. DOI: 10.1016/j.geoderma.2004.01.003.Google Scholar

  • Antonkiewicz, J. (2007). Influence of different ash-sludge and ash-peat mixtures on the yield and elements content of a grass and birdsfoot trefoil mixted stand. Part II. Heavy metals. Zeszyty Problemów Postępów Nauk Rolniczych, 520, 265-278 [in Polish].Google Scholar

  • Bada, S. O., & Potgieter-Vermaak, S. (2008). Evaluation and treatment of coal fly ash for adsorption application. Leonardo Electronic Journal of Practices and Technologies, 12, 37-48.Google Scholar

  • Barrow, N. J. (1999). The four laws of soil chemistry: The Lepper lecture 1998. Australian Journal of Soil Research 37, 787-829.Google Scholar

  • Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 3-82. DOI: 10.1016/S0269- 7491(03)00250-1.Google Scholar

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemical Society 60, 309-319. DOI: 10.1021/ja01269a023.Google Scholar

  • Bradshaw, A. (2000). The use of natural processes in reclamation - Advantages and Difficulties. Landscape and Urban Planning, 51(2-4), 89-100. DOI: 10.1016/S0169-2046(00)00099-2.Google Scholar

  • Carlon, C., Norbiato, M., Critto, A., & Marcomini, A. (2000). Risk analysis applied to a contaminated industrial site: Determination of risk based remedial targets. Annale Chimica, 90, 349-358.Google Scholar

  • Carter, D. L., Mortland, M. M., & Kemper, W. D. (1986). Specific Surface. Methods of Soil Analysis. Chapter 16, Agronomy, No. 9, Part 1, 2nd Ed., American Society of Agronomy.Google Scholar

  • Ciccu, R., Ghiani M., Peretti, R., Serci A., & Zucca A. (2001). Heavy metal immobilisation using fly ash in soil contaminated by mine activity. International Ash Utilization Symposium. Center for Applied Energy Research, University of Kentucky. Paper #6 (www.flyash.info).Google Scholar

  • Circular Economy Package (CEP): http://ec.europa.eu/environment/circular-economy (Entry 15.07.2017) de Jong, E. (1999). Comparison of three methods of measuring surface area of soils. Canadian Journal of Soil Science 79, 345-351. DOI: 10.4141/S98-069.Google Scholar

  • Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2004). Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils. Soil Science and Plant Nutrition, 50(6), 899-908. DOI: 10.1080/00380768.2004.10408552.Google Scholar

  • Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2007). Assessment of copper and zinc stabilization process in soils after the application of brown coal, sugar beet leaves and cement. Ecological Chemistry and Engineering, 14(2),181-189.Google Scholar

  • Diatta, J. B., & Chudzińska, E. (2009). Chemical remediation of zinc contaminated soils by applying a cementbrown coal-based component (CEMBRO). Ochrona Środowiska i Zasobów Naturalnych, 41, 89-101.Google Scholar

  • Diatta, J. B., Skubiszewska, A., & Witczak R. (2009). Assessment of chemical degradation of selected soil properties as induced by copper, zinc and hydrogen. Ecological Chemistry and Engineering A, 16, 1-10.Google Scholar

  • Diatta, J. B., Komisarek, J., & Wiatrowska, K. (2012). Evaluation of heavy metals competitive sorption and potential mobility on the basis of Cu/Cd and Zn/Pb binary systems. Fresenius Environmental Bulletin, 21(5), 1105-1109.Google Scholar

  • Fotovat, A., Naidu, R., & Sumner M. E. (1997). Water: soil ratio influences aqueous phase chemistry of indigenous copper and zinc in soils. Australian Journal of Soil Research 35, 687-709. DOI: 10.1071/S96086.Google Scholar

  • Gajda, A., Jaworski W., & Barc W. (2002). Prognosis in the production of coal combustion by-products at professional power stations to 2015. Biuletyn Miesięczny PSE SA, 11(137), 2-14 [in Polish].Google Scholar

  • Gluzińska, J. Walawska B., & Łuczkowska D. (2016). Properties of waste fly ash as a hard coal combustion byproduct after the application of dry sodium sorbents to purify flue gases. Prace Instytutu Mechaniki Górotworu PAN, 18(3), 83-91 [in Polish].Google Scholar

  • Gregg, S. J., & Sing, K. S. W. (1967). Adsorption, Surface Area and Porosity. Academic Press Inc, London, UK, p. 44-50.Google Scholar

  • Gupta, S. K., Herren, T., Wenger, K., Krebs, R., & Hari, T. (2000). In-situ gentle remediation measures for heavy metal-polluted soils, [in:] Phytoremediation of contaminated soil and water. Soil and Water Pollution , CRC Press LLC, p. 303-322.Google Scholar

  • Hycnar, J. J., Szczygielski, T., Lysek, N., & Rajczyk, K. (2014). Trends in the optimalisation of the management of coal combustion by-products. Piece Przemysłowe i Kotły, 5-6,16-27 [in Polish].Google Scholar

  • Ibekwe, A. M, Angle, J. S, Chaney, R. L, & Van Berkum, P. (1997). Enumeration and N2 fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agriculture Ecosystems and Environment 61,1679-1685.Google Scholar

  • International Standard (1995). Soil quality - Extraction of trace elements soluble in aqua regia, ISO 11466 Geneva.Google Scholar

  • Kabata-Pendias, A., Motowicka-Terelak, T., Piotrowska, M., Terelak, H., & Witek, T. (1993). Evaluation of the degree of soils and plants contamination by heavy metals and sulphur. Framework guidelines for agriculture. IUNG Puławy P(53), 20 p. (in Polish).Google Scholar

  • Krebs, R., Gupta, S. K., Furrer, & Schulin, G. R. (1999). Gravel sludge as immobilizing agent in soils contaminated by heavy metals: a field study. Water, Air and Soil Pollution, 115, 465-479. DOI: 10.1023/A:1005167004828.Google Scholar

  • Kumpiene, J., Lagerkvist A., & Maurice C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management 28, 215-225. DOI: 10.1016/j.wasman.2006.12.012.Google Scholar

  • Lombi, E., Hamon, R. E., McGrath, S. P. & Mc-Laughlin, M. J. (2003). Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science and Technology, 37(5), 979-984. DOI: 10.1021/es026083w.Google Scholar

  • Łączny, M. J. (2002). Non-conventional method of utilization of fly ash. Central Mining Institute, Katowice, pp. 7-19.Google Scholar

  • Matsi, T. & Keramidas, V. Z. (1999). Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and ryegrass growth and composition. Environmental Pollution, 104(1), 107-112. DOI: 10.1016/S0269- 7491(98)00145-6.Google Scholar

  • McBride, M. B., Sauvé, S., & Hendershot W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48, 337-346. DOI: 10.1111/j.1365-2389.1997.tb00554.x.Google Scholar

  • McGowen, S. L. (2000). In-situ chemical treatments for reducing metal solubility and transport in smelter contaminated soils. Ph.D. Diss. Dep. Plant and Soil Sciences, Oklahoma State Univ., Stillwater, OK.Google Scholar

  • Mench, M., Vangronsveld, J., Lepp, N. W., & Edwards, R. (1998). Physicochemical aspects and efficiency of trace element immobilization by soil amendments. In: J. Vangronsveld and S. D. Cunningham (editors): Metal-Contaminated Soils: In-situ inactivation and phytorestoration, pp. 151-182. Springer Verlag, Berlin Heidelberg. ISBN: 1-57059-531-3.Google Scholar

  • Mohapatra, R., & Rao, J. R. (2001). Some aspects of characterisation, utilisation and environmental effects of fly ash (a Review). Journal of Chemical Technology and Biotechnology, 76(1), 9-26. DOI: 10.1002/1097- 4660(200101)76:1<9::AID-JCTB335>3.0.CO;2-5.Google Scholar

  • Oste, L. A., Lexmond, T. M. & Van Riemsdijk, W. H. (2002). Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality, 31(3), 813-821.Google Scholar

  • Percival, H. J, Speir, T. W, & Parshotam, A. (1999). Soil solution chemistry of contrasting soils amended with heavy metals. Australian Journal of Soil Research 37, 993-1004. DOI: 10.1071/SR98055.Google Scholar

  • Polish Standard (1994). Polish Standardisation Committee, ref. PrPN-ISO 10390 (E): Soil quality and pH determination. First edition (in Polish).Google Scholar

  • Querol, A. A., Moreno, N., Alvarez-Ayuso, E., García-Sánchez, A., Cama, J., Ayora, C. & Simón, M. (2005). Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 62(2), 171-180. DOI: 10.1016/j.chemosphere.2005.05.029.Google Scholar

  • Ramme, B. W., & Tharaniyil, M. P. (2013). We Energies - Coal Combustion Products Utilization Handbook. Copyright 2013, Wisconsin Electric Power Company. 3rd Edition, Manufactured in the United States of America, 448 p.Google Scholar

  • Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: Sparks D.L. et al. (ed). Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI, 417-435.Google Scholar

  • Robl, T., Mahboub, K., Will, S., & Robert R. (2010). Fluidized bed combustion ash utilization: CFBC fly ash as a pozzolanic additive to Portland cement concrete. Coventry University and the University of Wisconsin Milwaukee Centre for By-products Utilization. Second International Conference on Sustainable Construction Materials and Technologies (June 28-30, 2010). Universita Politecnica delle Marche, Ancona, Italy. Special Technical Proceedings ed. Claisse, P., Ganjian, E., Canpolat, F., & Naik, T. (ISBN 978-1-4507-1488-4).Google Scholar

  • Sanderson, R. (1989). Electronegativity and bond energy. Journal of American Chemical Society, 105(8), 2259-2261.Google Scholar

  • Sarbak, Z., & Kramer-Wachowiak, M., 2012: The use of fly ash as sorbents for heavy metals. Przemysł Chemiczny, 91(2), 189-192 [in Polish].Google Scholar

  • Schutter, M. E., & Fuhrmann, J. J. (2001). Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates. Soil Biology and Biochemistry 33(14), 1947-1958.Google Scholar

  • Singh, S. D. C. & Shea, P. J. (1999). Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH. Environmental Science and Technology, 33(9), 1488-1494. DOI: 10.1021/es9806175.Google Scholar

  • Sparks, D. L. (1995). Environmental soil chemistry. Academic Press Inc. San Diego, California: 267 p. Stevens, G., & Dunn, D. (2004). Fly ash as a liming material for cotton. Journal of Environmental Quality, 33(1), 343-348. DOI: 10.2134/jeq2004.0343.Google Scholar

  • Szymańska, I. (2013). Combustion By-Products - waste, product, raw material. www.surowiec-naturalne.pl [in Polish]Google Scholar

  • Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B., (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38(3), 937-944. DOI: 10.1021/es0348750.Google Scholar

  • Thomas, G.W. (1982): Exchangeable cations. (p. 159-165). Methods of Soil Analysis, Part 2. Chemical and Microbial Properties (No. 9), ASA-SSSA. Second Edition. Edited by Page A. L., Miller, R. H. & Keeney D.R. Madison, Wisconsin, USAGoogle Scholar

  • Terzano, R., Spagnuolo, M., Medici, L., & Ruggiero, P. (2004). Stabilization of Cu and Cd in the presence of montmorillonite by means of coal fly ash. Fresenius Environmental Bulletin 13(10), 995-999.Google Scholar

  • Ulmanu, M., Matsi, T., Anger, I., Gament, E., Olanescu, G., Predescu, C., Sohaciu, M. (2007). The remedial treatment of soil polluted with heavy metals using fly ash. University Politehnica București Scientific Bulletin B/69(2), 109-116.Google Scholar

  • Wei, Y. L., Yang, Y. W. & Cheng, N. (2001). Study of thermally immobilized Cu in analogue minerals of contaminated soils. Environmental Science and Technology, 35(2), 416-421. DOI: 10.1021/es0008721.Google Scholar

  • Właśniewski, S. (2009). Effect of fertilization with fly ash from black coal on some chemical properties of sandy soil and yields of oat. Ochrona Środowiska i Zasobów Naturalnych, 41, 479-488.Google Scholar

  • Xiao, R., Chen, X., Wang, F., & Yu, G. (2011). The physicochemical properties of different biomass ashes at different ashing temperature. Renewable Energy 36, 244-249. DOI: 10.1016/j.renene.2010.06.027.Google Scholar

About the article

Received: 2017-05-02

Accepted: 2017-08-31

Published Online: 2017-12-01

Published in Print: 2017-12-01

Citation Information: Mineralogia, Volume 48, Issue 1-4, Pages 127–143, ISSN (Online) 1899-8526, DOI: https://doi.org/10.1515/mipo-2017-0016.

Export Citation

© 2018 Jean Diatta, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in