Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

The Removal of Organic Compounds by Natural and Synthetic Surface-Functionalized Zeolites: A Mini-Review

Barbara Muir / Magdalena Wołowiec / Tomasz Bajda / Paulina Nowak / Piotr Czupryński
Published Online: 2018-09-15 | DOI: https://doi.org/10.1515/mipo-2017-0017

Abstract

The use of zeolites as sorbents has been investigated as a replacement for existing costly methods of removing organic contaminants from water solutions. Zeolites can be modified by inorganic salts, organic surfactants, metals or metal oxides in order to increase their adsorption capacity. The unique ion exchange and adsorption properties of zeolites make them very suitable for application in the removal of organic compounds such as volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenols and other complex petrochemicals. Many different studies have demonstrated their effectiveness in reducing the concentrations of organic contaminants as well as petroleum derivatives in water, which has been summarized in this paper.

Keywords: organo-zeolites; volatile organic compounds; surface modification; petroleum derivatives

References

  • Alkan, M., Hopa, C., Yilmaz, Z., & Guler, H. (2005). The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous and Mesoporous Materials, 86, 176-184. DOI: 10.1016/j.micromeso.2005.07.008.CrossrefGoogle Scholar

  • Almeida, I. L., Antoniosi Filho, N. R., Alves, M. I., Carvalho, B. G., & Coelho, N. M. (2012). Removal of BTEX from aqueous solution using Moringaoleifera seed cake. Environmental Technology, 33, 1299-1305. DOI: 10.1080/09593330.2011.621451.CrossrefGoogle Scholar

  • Aivalioti, M., Pothoulaki, D., Papoulia, P., & Gidarakos, E. (2012). Removal of BTEX, MTBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite. Journal of Hazardous Materials, 207- 208, 136-146. DOI: 10.1016/j.hazmat.2011.04.084.CrossrefGoogle Scholar

  • Apreutesei, R. E., Catrinescu, C., & Teodosiu, C. (2008). Surfactant-modified natural Zeolites for environmental applications in water purification. Environmental Engineering and Management Journal, 7, 149-161.Google Scholar

  • Bandura, L., Woszczuk, A., Kołodyńska, D., & Franus, W. (2017a). Application of Mineral Sorbents for Removal of Petroleum Substances: A Review. Minerals, 7, 1-25. DOI: 10.3390/min7030037.CrossrefGoogle Scholar

  • Bandura, L., Kołodyńska, D., & Franus, W. (2017b). Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process Safety and Environmental Protection, 109, 214-223. DOI: 10.1016.j.psep.2017.03.036.Google Scholar

  • Bandura L., Franus M., Józefaciuk G., & Franus W. (2015). Syntetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel, 147, 100-107. DOI: 10.1016/j.fuel.2015.01.067.CrossrefGoogle Scholar

  • Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61, 43-56. DOI: 10.1016/S1387-1811(03)00354-8.CrossrefGoogle Scholar

  • Chao, H.-P., Peng, C.-L., Lee, C.-K., & Han, Y.-L. (2011). A study on sorption of organic compounds with different water solubilities on octadecyltrichlorosilane-modified NaY zeolite. Journal of the Taiwan Institute of Chemical Engineers, 43, 195-200. DOI: 10.1016/j.tice.2011.10.002.CrossrefGoogle Scholar

  • Derkowski, A., Franus, W., Waniak-Nowicka, H., & Czímerová, A. (2007). Textural properties vs. CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature. International Journal of Mineral Processing, 82(2), 57-68. DOI: 10.1016/j.minpro.2006.10.001.CrossrefGoogle Scholar

  • Franus, W., & Wdowin, M. (2010). Removal of ammonium ions by selected natural and synthetic zeolites. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 26(4), 133-148.Google Scholar

  • Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186, 5721-5729. DOI: 10.1007/s10661-014-3815-5.CrossrefGoogle Scholar

  • Gatta, G. D., Lotti, P., Nestola, F., & Pasqual, D. (2012). On the high-pressure behavior of gobbinsite, the natural counterpart of the synthetic zeolite Na-P2. Microporous and Mesoporous Materials, 163, 259-269. DOI: 10.1016/j.micromeso.2012.07.005.CrossrefGoogle Scholar

  • Grce, M., & Pavelić, K. (2005). Antiviral properties of clinoptilolite. Microporous and Mesoporous Materials, 79, 165-169. DOI: 10.1016/j.micromeso.2004.10.039.CrossrefGoogle Scholar

  • Itabashi, K., Fukushima, T., & Igawa, K. (1986). Synthesis and characteristic properties of siliceous mordenite. Zeolites, 6, 30 -34. DOI: 10.1016/0144-2449(86)90008-4.CrossrefGoogle Scholar

  • Kibazohi, O., Yun, S. I., & Anderson, W. A. (2004). Removal of Hexane in Biofilters Packed with Perlite and a Peat-Perlite Mixture. World Journal of Microbiology and Biotechnology, 20, 337-343. DOI: 10.1023/B:WIBI.0000033054.15023.71.CrossrefGoogle Scholar

  • Kuleyin, A. (2006). Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. Journal of Hazardous Materials, 144, 307-315. DOI:10.1016/j.hazmat.2006.10.036.CrossrefGoogle Scholar

  • Lee, S. M., & Tiwari, D. (2012). Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 67-68, 91-98. DOI: 10.1016/j.clay.2012.02.006.CrossrefGoogle Scholar

  • Lemic, J., Tomasevic-Canovic, M., Adamovic, M., Kovacevic, D., & Milicevic, S. (2007). Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites. Microporous and Mesoporous Materials, 105, 317-323. DOI: 10.1016/j.micromeso.2007.04.014.CrossrefGoogle Scholar

  • Li, Z., & Bowman, R. S. (1998). Sorption of Perchloroethylene by Surfactant-Modified Zeolite as Controlled by Surfactant Loading. Environmental Science and Technology, 32, 2278-2282. DOI: 10.1021/es971118r.CrossrefGoogle Scholar

  • Mansouri, N., Rikhtegar, N., Panahi, H. A., Atabi, F., & Shahraki B. K. (2013). Porosity, characterization and structural properties of natural zeolite - clinoptilolite - as a sorbent. Environment Protection Engineering, 39, 139-152. DOI: Margeta, K., Zabukovec Logarn, N., Šiljeg, M., & Farkas, A. (2013). Natural Zeolites in Water Treatment - How Effective is Their Use. Water Treatment, Dr. Walid Elshorbagy (Ed.), InTech, DOI: 10.5772/50738.CrossrefGoogle Scholar

  • Mathur, A. K., Majumder, C. B., & Chatterjee, S. (2007). Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media. Journal of Hazardous Materials, 148, 64-74. DOI: 10.1016/j.jhazmat.2007.02.030.CrossrefGoogle Scholar

  • Meininghaus, C. K. W., & Prins, R. (2000). Sorption of volatile organic compounds on hydrophobic zeolites. Microporous and Mesoporous Materials, 35-36, 349-365. DOI: 10.1016/S1387-1811(99)00233-4.CrossrefGoogle Scholar

  • Muir, B., & Bajda, T. (2016a). Organically modified zeolites in petroleum compounds spill cleanup - Production, efficiency, utilization. Fuel Processing Technology, 149, 153-162. DOI: 10.1016/j. fuproc.2016.09.017.CrossrefGoogle Scholar

  • Muir, B., Matusik, J., & Bajda, T. (2016b). New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features. Applied Surface Science, 361, 242-250. DOI: 10.1016/j.apsusc.2015.11.116.CrossrefGoogle Scholar

  • Ranck, J. M., Bowman, R. S., Weeber, J. L., Katz, L. E., & Sullivan, J. (2005). BTEX removal from produced water using surfactant-modified zeolite. Journal of Environmental Engineering, 131, 434-442. DOI: 10.1061/(ASCE)0733-9372(2005)131:3(434).CrossrefGoogle Scholar

  • Saini, V. K., & Pires, J. (2017). Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs. Journal of Environmental Sciences, 55, 321-330. DOI: 10.1016/j.jes.2016.09.017.CrossrefGoogle Scholar

  • Sand, L. B. (1968). Synthesis of large-port and small port mordenites. In Molecular Sieves, Society of Chemical Industry, London, 71-77.Google Scholar

  • Szala, B., Bajda, T., Matusik, J., Zięba, K., & Kijak, B. (2015). BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials, 202, 115-123. DOI: 10.1016/j.micromeso.2014.09.033.CrossrefGoogle Scholar

  • Qin, X. S., Huang, G. H., & Li, Y. P. (2008). Risk Management of BTEX Contamination in Ground Water - An Integrated Fuzzy Approach. Ground Water, 46, 5, 755-767. DOI: 10.1111/j.1745-6584.2008.00464.x.CrossrefGoogle Scholar

  • Querol, X., Alastuey, A., Fernandez-Turiel, J. L., & Lopez-Soler, A. (1995). Synthesis of zeolites by alcaline activation of ferro-aluminous fly ash. Fuel, 74, 1226-1231. DOI: 10.1016/0016-2361(95)00044-6.CrossrefGoogle Scholar

  • Xie, J., Meng, W., Wu, D., Zhang, Z., & Kong, H. (2012). Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. Journal of Hazardous Materials, 231-232, 57-63. DOI: 10.1016/j.hazmat.2012.06.035.CrossrefGoogle Scholar

  • Xie, Q., Xie, J., Wang, Z., Wu, D., Zgang, Z., & Kong, H. (2013). Adsorption of organic pollutants by surfactant modified zeolite as controlled by surfactan chain length. Microporous and Mesoporous Materials, 179, 144-150. DOI: 10.1016/j.micromeso.2013.05.027.CrossrefGoogle Scholar

  • Zhao, H., & Vence, G. F. (1988). Sorption of trichloroethylene by organo-clays in the presence of humic substances. Water Research, 32, 3710-3716. DOI: 10.1016/S0043-1354(98)00172-9.CrossrefGoogle Scholar

About the article

Received: 2017-05-09

Accepted: 2017-08-30

Published Online: 2018-09-15

Published in Print: 2016-12-01


Citation Information: Mineralogia, Volume 48, Issue 1-4, Pages 145–156, ISSN (Online) 1899-8526, DOI: https://doi.org/10.1515/mipo-2017-0017.

Export Citation

© 2018 Barbara Muir, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in