Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

Data Preprocessing and Its Influence on the Adsorption Capacity of Calculated Shale. Comparison of Selected Methods: A Case Study

Patrycja Waszczuk
  • Politechnika Śląska, Wydział Górnictwa i Geologii, Instytut Eksploatacji Złóż, Zakład Technologii Wydobywczych, Przeróbczych i Gospodarki Odpadami, ul. Akademicka 2, Gliwice, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-01 | DOI: https://doi.org/10.1515/mipo-2017-0018

Abstract

This article discusses the impact of choosing a data preprocessing method for the calculated gas density necessary to determine the sorption capacity of a material. The sample of gas-bearing shale was subjected to a volumetric sorption test. The obtained data, pressure and temperature were preprocessed by three methods: moving average, polynomial regression and locally weighted scatterplot smoothing. The results include the excess and absolute sorption calculated from data that were filtered, and data without pre-treatment and Langmuir isotherms’ coefficients for every case.

Keywords: data preprocessing; sorption capacity

References

  • Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Yucel Akkutlu, I., & Sondergeld, C. H.. (New pore-scale considerations for shale gas in place calculations SPE Unconvencional Gas Conference, SPE 131722Google Scholar

  • Bush, A., & Gensterblum, U. (2011). CBM and CO2-ECBM related sorption processes in coal. A review. International Journal of Coal Geology, 87(2), 49-71. DOI: 10.1016/j.coal.2011.04.011.Google Scholar

  • Harpalani, S., Prusty, B. K., & Dutta, P. (2006). Methane/CO2sorption modelling for coalbed methane production and CO2sequestration. Energy & Fuels, 20, 1591-1599. DOI: 10.1021/ef050434l.Google Scholar

  • Khosrokhavar, R. (2016). Mechanism for CO2sequestration in geological formations and enhanced gas recovery, Springer International Publishing SwitzerlandGoogle Scholar

  • Kroos, B. M., Van Bergen, F., Gensterblum, Y., Siemons, N, Pagnier, H. J. M., & David, P. (2002). High pressure methane and carbon dioxide adsorption on dry and moisture equiliobrated Pennsylvanian coals. International Journal of Coal Geology, 74, 69-92. DOI: 10.1016/S0166-5162(02)00078-2.Google Scholar

  • Lutyński, M. A., Battistutta, E., Bruining, H., & Wolf, K. A. A. (2011). Discrepancies in the assessment of CO2storage capacity and methane recovery from coal with selected equations of state Part I. Experimental isotherm calculation. Physicochemical Problems of Mineral Processing, 47, 159-168.Google Scholar

  • Lutyński, M. A., & Gonzalez Gonzalez, M. A. (2016). Assessment of the total CO2storage capacity of shales - upscaling from sorption and reservoir data. 35thInternational Geological Congress 31STaugust 2016, Cape Town, South Africa.Google Scholar

  • Lutyński, M. A. (2014). Impact of preparation and storage of activated carbon on the high pressure sorption of CO2. Buletin of Polish Academy of Sciences, 62, 113-119.Google Scholar

  • Lutyński, M. A., & Gonzalez Gonzalez, M. A. (2016). Total gas in-place calculations for the Baltic-Podlasie- Lublin basin shales in Poland. E3S Web Conference. Mineral Engineering Conference MEC2016, Volume 8, 01053. DOI: 10.1051/e3sconf/20160801053.Google Scholar

  • Rexer, T., Mathia, E., Aplin, A. C., & Thomas K. M. (2014). High-pressure methane adsorption and characterization of pores in Posidonia Sales and isolated kerogens. Energy & Fuels, 28, 2886-2901. DOI: 10.1021/ef402466m.Google Scholar

  • Sakurovs, R., Day, S., Weir, S., & Duffy, G. (2007). Application of a Modified Dubinin−Radushkevich Equation to Adsorption of Gases by Coals under Supercritical Conditions. Energy & Fuels, 21(2), 992-997. DOI: 10.1021/ef0600614.Google Scholar

  • Van Hemert, P., Bruining, H, Rudolph, E. S. J., Wolf K, H. A., & Maas, J. G. (2009). Improved manometric setup for the accurae determination of supercritical carbon dioxide sorption. Review of Scientific Instruments, 80(3), 035103. DOI: 10.1063/1.3063064.Google Scholar

About the article

Received: 2017-04-21

Accepted: 2017-12-05

Published Online: 2017-12-01

Published in Print: 2017-12-01


Citation Information: Mineralogia, Volume 48, Issue 1-4, Pages 157–165, ISSN (Online) 1899-8526, DOI: https://doi.org/10.1515/mipo-2017-0018.

Export Citation

© 2018 Patrycja Waszczuk, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in