Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mineralogia

The Journal of Mineralogical Society of Poland

2 Issues per year


CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Open Access
Online
ISSN
1899-8526
See all formats and pricing
More options …

Trace elements and REE enrichment at Seboah Hill, SW Egypt

Kamaleldin M. Hassan
  • Department of Radioactive Sedimentary Deposits, Research Sector, Nuclear Materials Authority, Qattamia, Cairo, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-15 | DOI: https://doi.org/10.2478/mipo-2018-0007

Abstract

Seboah Hill - a small body of peralkaline granite (< 0.1 km2) in south-western Egypt containing aegirine minerals ± magnesiohornblende ± riebeckite, cut by dikes of riebeckite-aegirine rhyolite, and exhibiting high radioactivity in veins of K-feldspar-aegirine-chalcedony-quartz ± trace hematite ± trace goethite was sampled and analyzed using inductively coupled plasma methods. Whole-rock chemical compositions of 5 granite, 3-rhyolitedike and 10 radioactive vein samples are presented. Of special significance is the enrichment of trace elements and rare earth elements (REE) in the radioactive veins. These include up to 6081 ppm Zr, 4252 ppm Ce, 1514 ppm Nd, 1433 ppm La, 1233 ppm Nb, 875 ppm Y, 388 ppm Pr, 350 ppm Th, 222 ppm Sm, 189 ppm Gd, 159 ppm Dy, 153 ppm Hf, 83 ppm Er, 76 ppm Yb and 58 ppm U. The chondrite-normalized patterns of REE in all samples show only limited variation and have negative europium (Eu) anomalies. These findings suggest that the sources of the REE are genetically related. Values of the Eu anomalies vary from 0.38-0.41 for the radioactive veins, 0.39- 0.53 for the granite and 0.31-0.44 for the rhyolite dikes. Eu variations are consistent for different paragentic stages.

Keywords: Oversaturated peralkaline rocks; trace elements; REE; thorium/uranium anomalies

References

  • Abdel Monem, H.M., & El-Afandy, A.H. (1997). Geochemistry and beneficiation studies of U-Th bearing minerals of Um Risha complex, Eastern Desert, Egypt. Egyptian Mineralogist, 9, 43-58.Google Scholar

  • Andreeva, I.A. (2016). Genesis and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif, Mongolia: evidence from melt inclusions. Petrology, 24(5), 462-476. DOI: https://doi.org/10.1134/S0869591116050027.CrossrefGoogle Scholar

  • Baioumy, H.M., Ismael, I.S., & Zidan, I.H. (2003). Clay mineralogy of the Nubia Formation, Western Desert (Egypt). Geologica Carpathica, 54(5), 329-336.Google Scholar

  • Das, U.K., Gantait, A., Panda, L., & Hussain, S. (2016). Rare earth element potential of the felsite dykes of Phulan area, Siwana Ring Complex, Rajasthan, India. Current Science, 110(7), 1157-1162. DOI: 10.18520/cs/v110/i7/1157-1162.Google Scholar

  • Dongen, M.V., Weinberg, R.F., & Tomkins, A.G. (2010). REE-Y, Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation. Economic Geology 105, 763-776. DOI: 10.2113/gsecongeo.105.4.763.CrossrefGoogle Scholar

  • Egyptian Geological Survey and Mining Authority, 1981. Geological map of Egypt, scale 1:2,000,000. Abbasyia, Cairo, Egypt: Geological Survey and Mining Authority.Google Scholar

  • Evensen, N.M., Hamilton, P.J., & O'nions, R.K. (1978). Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42, 1199-1212. DOI: https://doi.org/10.1016/00167037(78)90114-X.CrossrefGoogle Scholar

  • Jain, R.S., Miglani, T.S., Kumar, S., Swarnkar, B.M., & Singh, R. (1996). Rare metal and rare earth rich peralkaline, agpaitic granitoid dykes of Siwana ring complex, District Barmer, Rajasthan. Current Science, 70(9), 854-858.Google Scholar

  • Harris, C., & Rickard, R. S. (1987). Rare-earth-rich eudialyte and dalyite from a peralkaline granite dyke at Strumsvola, Dronning Maud Land, Antarctica. Canadian Mineralogist, 25, 755-762.Google Scholar

  • Harpum, J.R. (1963). Petrographic classification of granitic rocks in Tanganyika by partial chemical analyses. Records of the Geological Survey of Tanganyika, 10, 80-86.Google Scholar

  • Hassan, K.M. (2005). Geochemical assessment of radioactive lava pockets in El-Seboah granite, Toshki area, south Western Desert, Egypt. Annals of the Geological Survey of Egypt, 28, 195-204.Google Scholar

  • Hassan, K.M. (2009a). Rhyolite-dacite-trachyandesite association: a Mössbauer spectroscopy study. Hyperfine Interactions, 192, 101-107. DOI: https://doi.org/10.1007/s10751-008-9904-5.CrossrefGoogle Scholar

  • Hassan, K.M. (2009b). Characterization of granites by 57Fe Mössbauer spectroscopy. Mineralogia, 40(1-4), 95-106. DOI: https://doi.org/10.2478/v10002-009-0008-x.CrossrefGoogle Scholar

  • Hassan, K.M. (2010). Valences and site characteristics of iron in radioactive magmatic veins (Egypt): A Mössbauer and chemical study. Mineralogia, 41(1-2), 23-33. DOI: https://doi.org/10.2478/v10002-010-0003-2.CrossrefGoogle Scholar

  • Hassan, K.M (2017). Mineralogical and geochemical signatures of silicified wood from the Petrified Forest, New Cairo, Egypt. The Canadian Mineralogist, 55,317-332. http://dx.doi.org/10.3749/canmin.1600089.CrossrefGoogle Scholar

  • Keevil, B. 1944. Thorium-uranium ratios in rocks and minerals. American Journal of Science, 242, 309-321.Google Scholar

  • List, F.K., El-Gaby, S., & Tehrani, R. (1989). The basement rocks in the Eastern and Western Deserts and Sinai. In M. Hermina, E., Klitzsch & S. List (Eds.), Stratigraphic lexicon and explanatory note to the geologic map of Egypt 1:500000 (pp. 33-56). Cairo, Egypt: Egyptian General Petroleum Corporation.Google Scholar

  • Mc Birney, A.R. (1984). Igneous petrology. Freeman Cooper and Company, California.Google Scholar

  • Marks, M.A.W., Hettmann, K., Schilling, J., Frost, B.R., & Markl, G. (2011). The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52, 439-455. DOI: https://doi.org/10.1093/petrology/egq086.CrossrefGoogle Scholar

  • Mason, B. (1966). Principle of Geochemistry. Third edition. John Willey and Sons Inc., New YorkGoogle Scholar

  • Philpotts, J. A., Taylor, C.D., & Baedecker, P.A. (1996). Rare-earth enrichment at Bokan Mountain, Southeast Alaska. In T. E. Moore & J. A. Dumoulin (Eds.), Geologic studies in Alaska by the U.S. Geological Survey, 1994: U.S. Geological Survey, Bulletin 2152, 89-100.Google Scholar

  • Salvi, S., & Williams-Jones, A. E. (1995). Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada. American Mineralogist, 80, 1031-1040.Google Scholar

  • Sorokhtina, N.V., Kogarko, L.N., Shpachenko, A.K., Groznova, M.V, Kostitsyn, Yu.A., Roshchina, I.A., Gredina, I.V. 2012. Geochemistry and age of the complex of alkaline met somatic rocks and carbonadoes of the Gremyakha-Vyrmes Massif, Kola Peninsula. Geochemistry International. 50(12), 975-987.Google Scholar

  • Singh, A.K., & Vallinayagam, G. (2009). Radioactive element distribution and rare-metal mineralization in anorogenic acid volcano-plutonic rocks of the Neoproterozoic Malani Felsic Province, Western Peninsular India. Journal of the Geological Society of India, 73, 837-853. DOI: https://doi.org/10.1007/s12594-009-0067-z.CrossrefGoogle Scholar

  • Towell, D.G., Spirn, R.V., & Winchester, J.W. (1969). Europium anomalies and the genesis of basalt: a discussion. Chemical Geology, 4, 461-464. DOI: https://doi.org/10.1016/0009-2541(69)90012-6.CrossrefGoogle Scholar

  • Watson, E.B. (1979). Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70, 407-419. DOI: https://doi.org/10.1007/BF00371047.CrossrefGoogle Scholar

  • Whalen, J.B., Currie, K.L., & Chappell, B.W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4), 407-419. DOI: https://doi.org/10.1007/BF00402202.CrossrefGoogle Scholar

  • Wedepohl, K.H. (1974). Handbook of geochemistry. Spring-Verlag, Berlin.Google Scholar

About the article

Received: 2017-12-03

Revised: 2018-05-15

Accepted: 2018-07-30

Published Online: 2018-09-15

Published in Print: 2017-12-20


Citation Information: Mineralogia, ISSN (Online) 1899-8526, DOI: https://doi.org/10.2478/mipo-2018-0007.

Export Citation

© 2018 Kamaleldin M. Hassan, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in