Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Molecular Based Mathematical Biology

Editor-in-Chief: Wei, Guowei

Ed. by Mitchell, Julie / Zhao, Shan

1 Issue per year

Mathematical Citation Quotient (MCQ) 2016: 0.20

Emerging Science

Open Access
See all formats and pricing
More options …

Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular Complexes

Tao Liao / Yongjie Zhang / Peter M. Kekenes-Huskey / Yuhui Cheng / Anushka Michailova / Andrew D. McCulloch / Michael Holst / J. Andrew McCammon
Published Online: 2013-07-19 | DOI: https://doi.org/10.2478/mlbmb-2013-0009


Multi-scale modeling plays an important role in understanding the structure and biological functionalities of large biomolecular complexes. In this paper, we present an efficient computational framework to construct multi-scale models from atomic resolution data in the Protein Data Bank (PDB), which is accelerated by multi-core CPU and programmable Graphics Processing Units (GPU). A multi-level summation of Gaussian kernel functions is employed to generate implicit models for biomolecules. The coefficients in the summation are designed as functions of the structure indices, which specify the structures at a certain level and enable a local resolution control on the biomolecular surface. A method called neighboring search is adopted to locate the grid points close to the expected biomolecular surface, and reduce the number of grids to be analyzed. For a specific grid point, a KD-tree or bounding volume hierarchy is applied to search for the atoms contributing to its density computation, and faraway atoms are ignored due to the decay of Gaussian kernel functions. In addition to density map construction, three modes are also employed and compared during mesh generation and quality improvement to generate high quality tetrahedral meshes: CPU sequential, multi-core CPU parallel and GPU parallel. We have applied our algorithm to several large proteins and obtained good results.

Keywords: efficient computation; multi-scale modeling; biomolecular complex; mesh generation; multi-core CPU; GPU

  • [1] L. Albou, B. Schwarz, O. Poch, J. Wurtz, and D. Moras. Defining and characterizing protein surface using alpha shapes. Proteins, 76(1):1–12, 2009. CrossrefPubMedGoogle Scholar

  • [2] S. Artemova, S. Grudinin, and S. Redon. A comparison of neighbor search algorithms for large rigid molecules. Journal of Computational Chemistry, 32(13):2865–2877, 2011. CrossrefGoogle Scholar

  • [3] C. L. Bajaj, J. Castrillon-Candas, V. Siddavanahalli, and Z. Xu. Compressed representations of macromolecular structures and properties. Structure, 13:463–471, 2005. CrossrefPubMedGoogle Scholar

  • [4] C. L. Bajaj, V. Pascucci, and D. Schikore. Seed sets and search structures for optimal isocontour extraction. Technical report, Texas Institute of Computational and Applied Mathematics, 1999. Google Scholar

  • [5] C. L. Bajaj, V. Pascucci, A. Shamir, R. J. Holt, and A. N. Netravali. Multiresolution molecular shapes. Technical report, TICAM Technical Report, 1999. Google Scholar

  • [6] C. L. Bajaj, V. Pascucci, A. Shamir, R. J. Holt, and A. N. Netravali. Dynamic maintenance and visualization of molecular surfaces. Discrete Applied Mathematics, 127(1):23–51, 2003. CrossrefGoogle Scholar

  • [7] C. L. Bajaj and V. Siddavanahalli. Fast error-bounded surfaces and derivatives computation for volumetric particle data. Technical report, ICES 06-03, 2006. Google Scholar

  • [8] J. F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics, 1(3):235–256, 1982. CrossrefGoogle Scholar

  • [9] Y. Cheng, C. A. Chang, Z. Yu, Y. Zhang, M. Sun, T. S. Leyh, M. J. Holst, and J. A. Mccammon. Diffusional channeling in the sulfate activating complex: combined continuum modeling and coarsegrained Brownian dynamics studies. Biophysical Journal, 95(10):4659–4667, 2008. CrossrefGoogle Scholar

  • [10] M. L. Connolly. Analytical molecular surface calculation. Journal of Applied Crystallography, 16(5):548–558, 1983. CrossrefGoogle Scholar

  • [11] M. L. Connolly. Molecular surface: A Review. Network Science, 1996. Google Scholar

  • [12] J. P. D’Amato and M. Vénere. A CPU-GPU framework for optimizing the quality of large meshes. Journal of Parallel and Distributed Computing, (0):–, 2013. Google Scholar

  • [13] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Transactions on Graphics, 13(1):43–72, 1994. CrossrefGoogle Scholar

  • [14] R. Fonseca and P. Winter. Bounding volumes for proteins: a comparative study. Journal of Computational Biology, 19(10):1203 – 1213, 2012. CrossrefGoogle Scholar

  • [15] W. Geng and F. Jacob. A GPU-accelerated direct-sum boundary integral Poisson-Boltzmann solver. Computer Physics Communications, 184:1490–1496, 2013. CrossrefGoogle Scholar

  • [16] W. Geng and R. Krasny. A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules. Journal of Computational Physics, 247:62–87, 2013. CrossrefGoogle Scholar

  • [17] W. Geng and S. Zhao. Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation. Molecular Based Mathematical Biology, 1:109–123, 2013. Google Scholar

  • [18] J. Giard and B. Macq. Molecular surface mesh generation by filtering electron density map. International Journal of Biomedical Imaging, pages 263–269, 2010. Google Scholar

  • [19] J. A. Grant and B. T. Pickup. A Gaussian description of molecular shape. Journal of Physical Chemistry, 99(11):3503– 3510, 1995. CrossrefGoogle Scholar

  • [20] M. Holst, N. Baker, and F. Wang. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation algorithms I: algorithms and examples. Journal of Computational Chemistry, 21:1319–1342, 2000. CrossrefGoogle Scholar

  • [21] L. Hu, D. Chen, and G. Wei. High-order fractional partial differential equation transform for molecular surface construction. Molecular Based Mathematical Biology, 1:1–25, 2013. Google Scholar

  • [22] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of Hermite data. SIGGRAPH, 21:339–346, 2002. Google Scholar

  • [23] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998. Google Scholar

  • [24] B. Kim, K. J. Kim, and J. K. Seong. GPU accelerated molecular surface computing. Appl. Math, 6(1S):185S––194S, 2012. Google Scholar

  • [25] D.-S. Kim, J.-K. Kim, Y Cho, and C.-M. Kim. Querying simplexes in quasi-triangulation. Computer-Aided Design, 44(2):85 – 98, 2012. CrossrefGoogle Scholar

  • [26] D.-S. Kim, J. Seo, D. Kim, J. Ryu, and C.-H. Cho. Three-dimensional beta shapes. Computer-Aided Design, 38(11):1179–1191, 2006. CrossrefGoogle Scholar

  • [27] P. Laug and H. Borouchaki. Molecular surface modeling and meshing. Engineering with Computers, 18:199–210, 2002. CrossrefGoogle Scholar

  • [28] M. S. Lee, M. Feig, F. R. Salsbury, and C. L. Brooks. New analytic approximation to the standard molecular volume definition and its application to generalized born calculations. Journal of Computational Chemistry, 24(14):1348– 1356, 2003. CrossrefGoogle Scholar

  • [29] J. Leng, Y. Zhang, and G. Xu. A novel geometric flow-driven approach for quality improvement of segmented tetrahedral meshes. In Proceedings of the 20th International Meshing Roundtable, pages 347–364, 2012. Google Scholar

  • [30] W. Li and S. McMains. Voxelized Minkowski sum computation on the GPU with robust culling. Computer-Aided Design, 43(10):1270 – 1283, 2011. CrossrefGoogle Scholar

  • [31] A. Liu and B. Joe. Relationship between tetrahedron shape measures. BIT Numerical Mathematics, 34:268–287, 1994. CrossrefGoogle Scholar

  • [32] W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH, 21(4):163–169, 1987. CrossrefGoogle Scholar

  • [33] I. Lotan, F. Schwarzer, D. Halperin, and J. Latombe. Algorithm and data structures for efficient energy maintenance during Monte Carlo simulation of proteins. Journal of Computational Biology, 11(5):902 – 932, 2004. CrossrefGoogle Scholar

  • [34] B. Lu, X. Cheng, and J. A. McCammon. “New-version-fast-multipole-method" accelerated electrostatic interactions in biomolecular systems. Journal of Computational Physics, 226:1348–1366, 2007. CrossrefGoogle Scholar

  • [35] S. Pavanaskar and S. McMains. Filling trim cracks on GPU-rendered solid models. Computer-Aided Design, 45(2):535 – 539, 2013. CrossrefGoogle Scholar

  • [36] J. Ryu, R. Park, and D.-S. Kim. Molecular surfaces on proteins via beta shapes. Computer-Aided Design, 39(12):1042–1057, 2007. CrossrefGoogle Scholar

  • [37] M. F. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers, 38(3):305–20, 1996. CrossrefPubMedGoogle Scholar

  • [38] L. Schmitz, L. F. Scheidegger, D. K. Osmari, C. A. Dietrich, and J. L. D. Comba. Efficient and quality contouring algorithms on the GPU. Computer Graphics Forum, 29:2569 – 2578, 2010. CrossrefGoogle Scholar

  • [39] J.-K. Seong, N. Baek, and K.-J. Kim. Real-time approximation of molecular interaction interfaces based on hierarchical space decomposition. Computer-Aided Design, 43(12):1598 – 1605, 2011. CrossrefGoogle Scholar

  • [40] Y. Song, Y. Zhang, C. L. Bajaj, and N. A. Baker. Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Biophysical Journal, 87(3):1558–1566, 2004. CrossrefPubMedGoogle Scholar

  • [41] Y. Song, Y. Zhang, T. Shen, C. L. Bajaj, J. A. McCammon, and N. A. Baker. Finite element solution of the steady-state Smoluchowksi equation for rate constant calculations. Biophysical Journal, 86(4):2017–2029, 2004. CrossrefPubMedGoogle Scholar

  • [42] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. GPU-accelerated molecular modeling coming of age. Journal of Molecular Graphics and Modelling, 29(2):116 – 125, 2010. Google Scholar

  • [43] A. Varshney and F. P. Brooks, Jr. Fast analytical computation of richards’s smooth molecular surface. Proceedings of the IEEE Visualization, pages 300–307, 1993. Google Scholar

  • [44] C. L. Wang and D. Manocha. GPU-based offset surface computation using point samples. Computer-Aided Design, 45(2):321 – 330, 2013. CrossrefGoogle Scholar

  • [45] Q. Wang, J. JaJa, and A. Varshney. An efficient and scalable parallel algorithm for out-of-core isosurface extraction and rendering. Journal of Parallel and Distributed Computing, 67(5):592–603, 2007. CrossrefGoogle Scholar

  • [46] G. Wei, Y. Sun, Y. Zhou, and M. Feig. Molecular multiresolution surfaces. arXiv math-ph/0511001, 2005. Google Scholar

  • [47] Y. Xie, J. Cheng, B. Lu, and L. Zhang. Parallel adaptive finite element algorithms for solving the coupled electrodiffusion equations. Molecular Based Mathematical Biology, 1:90–108, 2013. Google Scholar

  • [48] Z. Yu, Michael J. Holst, Y. Cheng, and J. A. McCammon. Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. Journal of Molecular Graphics and Modeling, 26(8):1370–1380, 2008. Google Scholar

  • [49] D. Zhang, J. Suen, Y. Zhang, Y. Song, Z. Radic, P. Taylor, M. J. Holst, C. L. Bajaj, N. A. Baker, and J. A. Mc- Cammon. Tetrameric mouse acetylcholinesterase: continuum diffusion rate calculations by solving the steady-state Smoluchowski equation using finite element methods. Biophysical Journal, 88(3):1659–1665, 2005. PubMedCrossrefGoogle Scholar

  • [50] Y. Zhang, C. L. Bajaj, and B. Sohn. 3D finite element meshing from imaging data. Computer Methods in Applied Mechanics and Engineering, 194(48—49):5083–5106, 2005. CrossrefGoogle Scholar

  • [51] Y. Zhang and J. Qian. Resolving topology ambiguity for multiple-material domains. Computer Methods in Applied Mechanics and Engineering, 247–248:166–178, 2012. Google Scholar

  • [52] Y. Zhang, G. Xu, and C. L. Bajaj. Quality meshing of implicit solvation models of biomolecular structures. Computer Aided Geometric Design, 23(6):510–530, 2006. CrossrefPubMedGoogle Scholar

  • [53] Q. Zheng, S. Yang, and G. Wei. Biomolecular surface construction by PDE transform. International Journal for Numerical Methods in Biomedical Engineering, 28(3):291–316, 2012. Google Scholar

About the article

Received: 2013-06-04

Accepted: 2013-07-09

Published Online: 2013-07-19

Citation Information: Molecular Based Mathematical Biology, ISSN (Online) 2299-3266, DOI: https://doi.org/10.2478/mlbmb-2013-0009.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hao-Chih Lee, Tao Liao, Yongjie Jessica Zhang, and Ge Yang
Bioinformatics, 2016, Volume 32, Number 5, Page 755
Subrata Sinha, Smriti Priya Medhi, and G.C. Hazarika
Procedia Computer Science, 2015, Volume 70, Page 769
Rosana Collepardo-Guevara, Guillem Portella, Michele Vendruscolo, Daan Frenkel, Tamar Schlick, and Modesto Orozco
Journal of the American Chemical Society, 2015, Volume 137, Number 32, Page 10205
Tao Liao, Xinge Li, Guoliang Xu, and Yongjie Jessica Zhang
Computer-Aided Design, 2016, Volume 70, Page 56
Tiantian Liu, Minxin Chen, and Benzhuo Lu
Journal of Molecular Modeling, 2015, Volume 21, Number 5
Peter M. Kekenes-Huskey, Tao Liao, Andrew K. Gillette, Johan E. Hake, Yongjie Zhang, Anushka P. Michailova, Andrew D. McCulloch, and J. Andrew McCammon
Biophysical Journal, 2013, Volume 105, Number 9, Page 2130
B Tu, S Y Bai, M X Chen, Y Xie, L B Zhang, and B Z Lu
Computational Science & Discovery, 2014, Volume 7, Number 1, Page 014002
Shiyang Bai and Benzhuo Lu
Journal of Molecular Graphics and Modelling, 2014, Volume 50, Page 44
Johan Hake, Peter M Kekenes-Huskey, and Andrew D McCulloch
Current Opinion in Structural Biology, 2014, Volume 25, Page 92

Comments (0)

Please log in or register to comment.
Log in