Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematical Modelling in Civil Engineering

The Journal of Technical University of Civil Engineering of Bucharest

4 Issues per year

Open Access
Online
ISSN
2066-6934
See all formats and pricing
More options …

Preliminary Wrf-Arw Model Analysis of Global Solar Irradiation Forecasting

Dragos Isvoranu
  • Corresponding author
  • Associate Professor, PhD, University Politehnica of Bucharest, Faculty of Aerospace Engineering, Bucharest
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viorel Badescu
Published Online: 2014-04-12 | DOI: https://doi.org/10.2478/mmce-2014-0001

Abstract

The purpose of this research is focused on the evaluation of short term global solar irradiation forecasting performance in order to assess the outcome of photovoltaic power stations. The paper presents a comparative analysis between the predicted irradiation obtained by numerical simulation and measurements. The simulation data is obtained from WRF-ARW model (Weather Research Forecasting-Advanced Research WRF), whose initial and boundary conditions are provided by the global forecasting model GFS. Taking into account the complexity of options for the physics models provided with WRF, we embarked upon a parametric analysis of the simulated solar irradiance. This complex task provides a better insight among the coupling of various physics options and enables us to find the best fit with the measured data for a specified site and time period. The present preliminary analysis shows that the accuracy of the computed global solar irradiance can be improved by choosing the appropriate built-in physics models. A combination of physics models providing the best results has been identified.

Keywords : global irradiance forecast; NWP simulation; PV stations; model analysis

References

  • [1] Heinemann D., Lorenz E., Girodo M. (2006). Forecasting of solar radiation in: Dunlop, E.D., Wald, L., Suri, M. (Eds.), Solar Energy Resource Management for Electricity Generation from Local Level to GlobalScale. Nova Science Publishers, Hauppauge.Google Scholar

  • [2] Mellit A., Pavan A.M. (2010). Sol. Energy 84 (5), (pp. 807-821)Google Scholar

  • [3] IEA, (2007). Energy Technologies at the Cutting Edge, International Energy Agency, OECD Publication Service, OECD, Paris.Google Scholar

  • [4] Grell G., Dudhia J., Stauffer D. (1998). A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR Tech. Note, NCAR/TN-398+STR, USA,.Google Scholar

  • [5] Zamora R.J., Dutton E.G., Trainer M., McKeen S.A., Wilczak J.M., Hou Y.T. (2005). Mon. Weather Rev. 133, (pp. 783-792).Google Scholar

  • [6] Zamora R.J., Solomon S., Dutton E.G., Bao J.W., Trainer M., Portmann R.W., White A.B., Nelson D.W., McNider R.T. (2003). J. Geophys.Res. 108 (D2), 4050.Google Scholar

  • [7] Lorenz E., RemundJ., Muller S.C., Traunmuller W., Steinmaurer G., Pozo D., Ruiz-Arias J.A., Fanego V.L., Ramirez L., Romeo M.G., Kurz C., Pomares L.M., Guerrero C.G. (2009). Benchmarking of different approaches to forecast solar irradiance. In: 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany.Google Scholar

  • [8] Lorenz E., Hurka J., Heinemann D., Beyer H.G. (2009). IEEE J. Selected Topics Appl. Earth Observations Remote Sens. 2 (1).Google Scholar

  • [9] Remund R., Perez Y., Lorenz E. (2008). Comparison of solar radiation forecasts for the USA. In: Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, (pp. 1.9-4.9).Google Scholar

  • [10] Perez Y., Ramos-Real F.J. (2009). Renew. Sust. Energy Rev., 13, (pp. 1058-1066).Google Scholar

  • [11] Ruiz-Arias J.A., Pozo-Vazquez D., Sanchez-Sanchez N., Montavez J.P., Hayas-Barru A., Tovar-Pescador J., Il Nuovo Cimento, 31 (5-6), (pp. 825-842).Google Scholar

  • [12] D. Santos-Muñoz, J. Wolff, C. Santos, García-Moya J.A., Nance L. (2009). Implementation and validation of WRF model as ensemble member of a probabilistic prediction system over Europe. In: 10th Annual WRF Users’ Workshop, Boulder, CO.Google Scholar

  • [13]ARW version3 Modeling System User's Guide. (2012). National Center for Atmospheric Research, http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html.Google Scholar

  • [14]Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.Y., Wang W., Powers, J.G. (2008). A description of the advanced research WRF Version 3. NCAR/TN-475+STR.Google Scholar

  • [15] Dudhia J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, (pp. 3077-3107).CrossrefGoogle Scholar

  • [16]Chou M.D., Suarez M.J. (1994). An efficient thermal infrared radiation parameterization for use in generalcirculation models. NASA Tech. Memo. 104606, 3, pp. 85.Google Scholar

  • [17]Collins, W.D. et al. (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Technical Note, NCAR/TN-464+STR, pp. 226.Google Scholar

  • [18]Mlawer, E. J., Taubman S. J., Brown P. D., Iacono M. J., Clough S. A. (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), (pp. 16663-16682).CrossrefGoogle Scholar

  • [19] Chou M.D., Suarez M. J. (1999) A solar radiation parametrization for atmospheric studies, NASA/TM-1999-104606, Vol. 15.Google Scholar

  • [20] Lacis A. A. and Hansen J. E. (1974). A parameterization for the absorption of solar radiation in the earth’s atmosphere, J. Atmos. Sci., 31, (pp. 118-133).CrossrefGoogle Scholar

  • [21]Dudhia J. Overview of WRF Physics, http://www.mmm.ucar.edu/wrf/users/tutorial/201201/Physics_Dudhia.ppt.pdfGoogle Scholar

  • [22] Stephens G. L. (1978). Radiation profiles in extended water clouds. Part II: Parameterization schemes, J. Atmos. Sci., 35, (pp. 2123-2132).CrossrefGoogle Scholar

  • [23]Badescu V., Dumitrescu A. (2013). The CMSAF Hourly Solar Irradiance Database (Product CM54). Accuracy And Bias Corrections With Illustrations For Romania (South-Eastern Europe), Journal of Atmospheric and Solar-Terrestrial Physics, 93, (pp. 100-109). Web of ScienceGoogle Scholar

About the article

Published Online: 2014-04-12

Published in Print: 2014-03-01


Citation Information: Mathematical Modelling in Civil Engineering, ISSN (Online) 2066-6934, DOI: https://doi.org/10.2478/mmce-2014-0001.

Export Citation

© by Dragos Isvoranu. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nir Krakauer and Daniel Cohan
Resources, 2017, Volume 6, Number 3, Page 29
[2]
M. A. Shamim, M. Bray, R. Remesan, and D. Han
Theoretical and Applied Climatology, 2015, Volume 122, Number 3-4, Page 403

Comments (0)

Please log in or register to comment.
Log in