Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematical Modelling in Civil Engineering

The Journal of Technical University of Civil Engineering of Bucharest

4 Issues per year

Open Access
Online
ISSN
2066-6934
See all formats and pricing
More options …

Using the Analytic Hierarchy Process to Prioritize and Select Phase Change Materials for Comfort Application in Buildings

Lavinia Gabriela Socaciu
  • Corresponding author
  • Assistant Professor, PhD, Technical University of Cluj-Napoca, Faculty of Mechanical Engineering
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paula Veronica Unguresan
Published Online: 2014-04-12 | DOI: https://doi.org/10.2478/mmce-2014-0003

Abstract

Phase change materials (PCMs) selection and prioritization for comfort application in buildings have a significant contribution to the improvement of latent heat storage systems. PCMs have a relatively large thermal energy storage capacity in a temperature range close to their switch point. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. Thermal energy storage systems using PCMs as storage medium offer advantages such as: high heat storage capacity and store/release thermal energy at a nearly constant temperature, relative low weight, small unit size and isothermal behaviour during charging and discharging when compared to the sensible thermal energy storage. PCMs are valuable only in the range of temperature close to their phase change point, since their main thermal energy storage capacity depend on their mass and on their latent heat of fusion. Selection of the proper PCMs is a challenging task because there are lots of different materials with different characteristics. In this research paper the principles and techniques of the Analytic Hierarchy Process (AHP) are presented, discussed and applied in order to prioritize and select the proper PCMs for comfort application in buildings. The AHP method is used for solving complex decisional problems and allows the decision maker to take the most suitable decisions for the problem studied. The results obtained reveal that the AHP method can be successfully applied when we want to choose a PCM for comfort application in buildings.

Keywords : Phase change material (PCM); Analytic hierarchy process (AHP); Selection and prioritization of PCMs

References

  • [1] Liu, M., Saman, W., Bruno, F. (2012). Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renewable and Sustenable EnergyReviews, Vol. 16, pp. 2118-2132Google Scholar

  • [2] Dincer I., Rosen, M.A., (2002). Thermal energy storage: storage and applications, John Wiley &Sons, Vol. 57-59Google Scholar

  • [3] Rathod, M.K., Kanzaria, H.V. (2011). A methodological concept for phase change material selection based on multimple criteria decision analysis with and without fuzzy environment, Material and Design, Vol. 32, pp. 3578-3585Google Scholar

  • [4] Rodriguez-Ubinas, E., Ruiz-Valero, L., Vega, S., Neila, J. (2012). Applications of phase change material in highly energy-efficient houses, Energy and Buildings, Vol. 50, pp. 49-62Google Scholar

  • [5] Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 318-345Google Scholar

  • [6] Abhat, A., (1983). Low temperature latent heat thermal energy storage: heat storage materials, Solar Energy, Vol. 30, No. 4, pp. 313-332CrossrefGoogle Scholar

  • [7] Saaty, T.L. (2008). Decision making with the analytic hierarchy process, International journal services sciences, vol. 1, no. 1, pp. 83-98Google Scholar

  • [8] Datta, A., Ray, A., Bhattacharya, G., Saha, H. (2011). Green energy sources (GES) selection based on multi-criteria decision analysis (MCDA), International Journal of Energy Sector Management, Vol. 5, No. 2, pp. 271-286Google Scholar

  • [9] Socaciu, L.G. (2011). Studii si cercetari privind utilizarea teoriei fuzzy in cadrul procesului de dezvoltare a produselor pe baza cerintelor clientului, Teza de doctorat, Universitatea Tehnica din Cluj-Napoca.Google Scholar

  • [10] Ray,A., Sarkar, B., Sanyal, S. (2010). The TOC-based algorithm for solving multiple constraint resources, IEEETransactions on Engineering Management, Vol. 57, No. 2, pp.301-310Google Scholar

  • [11] ***Climsel C24 (accessed may 2013), available at: http://www.climator.com/files/products/climsel-c24.pdfGoogle Scholar

  • [12]Koekenbier, S.F. (2011). PCM energy storage during defective thermal cycling, Design of the “Capacity Cube”and modelling of PCM pouches to trace the impact of incomplete thermal cycling, Thesis MSc-ME, Delft University of Technology.Google Scholar

  • [13] ***PlusIce, (accessed may 2013), available at: http://www.pcmproducts.net/files/PlusICE%20Range-2013.pdfGoogle Scholar

  • [14]***Rubitherm, (accessed may 2013), available at: http://www.rubitherm.de/english/index.htmGoogle Scholar

  • [15]Evers, A. (1989). Development of quantitative measure of the functionality of frame walls enhanced with phasechange materials using a dynamic wall simulator, Thesis MSc in Arhitectural Engineering, Wichita State University, Wichita, KansasGoogle Scholar

  • [16]Rouault, F., Bruneau, D., Sebastian, P., Ango, S.E., Lopez, J. (2012). Numerical modelling and experimental study of a box-section tube bunde thermal energy storage for free-cooling of buildings, The 12th International Conference on Energy Storage, Innstock, available at: http://hal.archives-ouvertes.fr/docs/00/80/50/28/PDF/Paper_Innostock_2012_-_INNO-SP-59.pdf, accessed may 2013Google Scholar

  • [17] ***TEAP, (accessed may 2013), available at: http://www.teappcm.com/products.htmGoogle Scholar

About the article

Published Online: 2014-04-12

Published in Print: 2014-03-01


Citation Information: Mathematical Modelling in Civil Engineering, ISSN (Online) 2066-6934, DOI: https://doi.org/10.2478/mmce-2014-0003.

Export Citation

© by Lavinia Gabriela Socaciu. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in