Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematical Modelling in Civil Engineering

The Journal of Technical University of Civil Engineering of Bucharest

4 Issues per year

Open Access
See all formats and pricing
More options …

Appropriate CFD Turbulence Model for Improving Indoor Air Quality of Ventilated Spaces

Cătălin Teodosiu / Viorel Ilie / Raluca Teodosiu
Published Online: 2015-03-03 | DOI: https://doi.org/10.2478/mmce-2014-0020


Accurate assessment of air-flow in ventilated spaces is of major importance for achieving healthy and comfortable indoor environment conditions. The CFD (Computational Fluid Dynamics) technique is nowadays one of the most used approaches in order to improve the indoor air quality in ventilated environments. Nevertheless, CFD has still two main challenges: turbulence modeling and experimental validation. As a result, the objective of this study is to evaluate the performance of different turbulence models potentially appropriate for the prediction of indoor airflow. Accordingly, results obtained with 6 turbulence models (standard k-ε model, RNG k-ε model, realizable k-ε model, LRN SST k-ω model, transition SST k-ω model and low Reynolds Stress-ω model) are thoroughly validated based on detailed experimental data. The configuration taken into account in this work corresponds to isothermal and anisothermal airflows produced by mixing ventilation systems in small enclosures at low room air changes per hour. In general, the transition SST k-ω model shows the better overall behavior in comparison with measurement values. Consequently, the application of this turbulence model is appropriate for air flows in ventilated spaces, being an interesting option to more sophisticated LES (Large Eddy Simulation) models as it requires less computational resources.

Keywords : turbulence model; CFD; anisothermal jet; ventilation; building


  • [1] Hancock, T. (2002). Built Environment (Encyclopedia of Public Health). Retrieved June 19, 2014 from http://www.encyclopedia.com/doc/1G2-3404000130.htmlGoogle Scholar

  • [2] Rota R., Canossa L. & Nano G. (2001). Ventilation design of industrial premises through CFD modelling. Canadian Journal of Chemical Engineering. 79(1), 80-86.CrossrefGoogle Scholar

  • [3] Kaji H., Akabayashi S.I. & Sakaguchi J. (2009). CFD analysis for detached house: Study on the ventilation efficiency on constantly ventilated house part 1. Journal of Environmental Engineering. 74(636), 161-168Google Scholar

  • [4] Papanikolaou E., Venetsanos A.G., Cerchiara G.M., Carcassi M. & Markatos N. (2011). CFD simulations on small hydrogen releases inside a ventilated facility and assessment of ventilation efficiency. International Journal of Hydrogen Energy. 36(3), 2597-2605Web of ScienceGoogle Scholar

  • [5] Kwon K.S., Lee I.B., Han H.T., Shin C.Y., Hwang H.S., Hong S.W., Bitog J.P., Seo I.H. & Han C.P. (2011). Analysing ventilation efficiency in a test chamber using age-of-air concept and CFD technology. Biosystems Engineering. 110(4), 421-433.Web of ScienceCrossrefGoogle Scholar

  • [6] Zhai Z.Q. & Metzger I.D. (2012). Taguchi-Method-Based CFD Study and Optimisation of Personalised Ventilation Systems. Indoor and Built Environment. 21(5), 690-702.Web of ScienceGoogle Scholar

  • [7] Yang L., Ye M. & He B.J. (2014). CFD simulation research on residential indoor air quality. Science of the Total Environment.472, 1137-1144.PubMedGoogle Scholar

  • [8] Zhuang R., Li X. & Tu J. (2014). CFD study of the effects of furniture layout on indoor air quality under typical office ventilation schemes. Building Simulation. 7(3), 263-275.Google Scholar

  • [9] Helmis C.G., Adam E, Tzoutzas J, Flocas H.A., Halios C.H, Stathopoulou O.I., Assimakopoulos V.D., Panis V., Apostolatou M. & Sgouros G. (2007). Indoor air quality in a dentistry clinic. Science of the Total Environment. 377(2), 349-365.Google Scholar

  • [10]Corgnati S.P. & Perino M. (2013). CFD application to optimise the ventilation strategy of Senate Room at Palazzo Madama in Turin (Italy). Journal of Cultural Heritage. 14(1), 62-69.Google Scholar

  • [11] Stathopoulou O. I. & Assimakopoulos V. D. (2008). Numerical Study of the Indoor Environmental Conditions of a Large Athletic Hall Using the CFD Code PHOENICS. Environmental Modeling & Assessment. 13(3), 449-458.Google Scholar

  • [1] Yang C., Demokritou P.,Chen Q., Spengler J. & Parsons A. (2000). Ventilation and air quality in indoor ice skating arenas. ASHRAE Transactions, 106, p. 338Google Scholar

  • [2] Cheng Y., Niu, J. & Gao N. (2012). Thermal comfort models: A review and numerical investigation. Building and Environment. 47(1), 13-22.Google Scholar

  • [3] Lombardi G., Maganzi M., Cannizzo F. & Solinas G. (2009). CFD simulation for the improvement of thermal comfort in cars. Auto Technology. 9(2), 52-56.Google Scholar

  • [4] Chen N., Liao S. & Rao Z. (2012). CFD evaluation on the temperature field and thermal comfort of coach in low atmospheric pressure passenger trains with oxygenation at high altitudes. China Railway Science. 33(4), 126-132.Google Scholar

  • [5] Sun H., An L., Feng Z. & Long Z. (2014).CFD simulation and thermal comfort analysis in an airliner cockpit. Journal of Tianjin University Science and Technology. 47(4), 298-303.Google Scholar

  • [6] Li Y. & Nielsen P.V. (2011).CFD and ventilation research. Indoor Air. 21, 442-453.Web of SciencePubMedCrossrefGoogle Scholar

  • [12] Sørensen D.N. & Nielsen P.V. (2003). Quality control of computational fluid dynamics in indoor environments. Indoor Air. 13, 2-17.PubMedCrossrefGoogle Scholar

  • [13] van Hooff T. Blocken B. & van Heijst G.J.F. (2013). On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. Indoor Air. 23, 236-249.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [14] Castanet S. (1998). Contribution to the study of ventilation and indoor air quality. Doctoral dissertation, INSA de Lyon, Villeurbanne, France.Google Scholar

  • [15] Stamou A. & Katsiris I. (2006). Verification of a CFD model for indoor airflow and heat transfer. Building and Environment. 41, 1171-1181.Google Scholar

  • [16] Zhai Z., Zhang Z., Zhang W. & Chen Q.Y. (2007). Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 1 - Summary of Prevalent Turbulence Models. HVAC&R Research. 13(6), 853-870.Google Scholar

  • [17]Zhang Z, Zhang W., Zhigiang J.W. & Chen Q.Y. (2007).Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2-Comparison with Experimental Data from Literature. HVAC&R Research. 13(6), 871-886.Google Scholar

  • [18]Launder B.E. & Spalding D.B. (1972). Lectures in Mathematical Models of Turbulence. London, England: Academic PressGoogle Scholar

  • [19] Schälin A. & Nielsen P.V. (2004). Impact of turbulence anisotropy near walls in room air flow. Indoor Air. 14(3), 159-168.CrossrefPubMedGoogle Scholar

  • [20]Yakhot V. & Orszag S.A. (1986). Renormalisation group analysis of turbulence. Journal of Science Computing. 1(1), 3-51.CrossrefGoogle Scholar

  • [21] Teodosiu C., Rusaouen G. & Hohotă R. (2003). Influence of boundary conditions uncertainties on the simulation of ventilated enclosures. Numerical Heat Transfer, Part A: Applications - An International Journal of Computation and Methodology. 44, 483-504.Google Scholar

  • [22] Hussain S. & Oosthuizen P.H. (2012). Validation of numerical modeling of conditions in an atrium space with a hybrid ventilation system. Building and Environment. 52, 152-161.Google Scholar

  • [23] Shih T.H., Liou A., Shabbir A., Yang Z. & Zhu J. (1995). A new k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. Computers Fluids. 24(3), 227-238.CrossrefGoogle Scholar

  • [24]Menter F.R. (1994). Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal. 32(8), 1598-1605.CrossrefGoogle Scholar

  • [25]Langtry R.B. & Menter F.R. (2009). Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal. 47(12), 2894-2906.CrossrefWeb of ScienceGoogle Scholar

  • [26]Wilcox D.C. (1998). Turbulence Modeling for CFD. La Canada, California, USA: DCW Industries, Inc.Google Scholar

  • [27] Hussain S., Oosthuizen P.H. & Kalendar A. (2012). Evaluation of various turbulence models for the prediction of the airflow and temperature distributions in atria. Energy and Buildings. 48, 18-28. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2015-03-03

Published in Print: 2014-12-01

Citation Information: Mathematical Modelling in Civil Engineering, Volume 10, Issue 4, Pages 28–42, ISSN (Online) 2066-6934, DOI: https://doi.org/10.2478/mmce-2014-0020.

Export Citation

© by Cătălin Teodosiu. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Haidong Wang, Xiaocen Tang, and Chen Huang
Science and Technology for the Built Environment, 2017, Volume 23, Number 2, Page 296
Catalin Teodosiu, Viorel Ilie, Radu Dumitru, and Raluca Teodosiu
Energy Procedia, 2016, Volume 85, Page 539
Catalin Ioan Teodosiu, Viorel Ilie, Radu Gabriel Dumitru, and Raluca Smaranda Teodosiu
Building Simulation, 2016, Volume 9, Number 3, Page 319

Comments (0)

Please log in or register to comment.
Log in