Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 18, Issue 2

Issues

An Idea of a Measurement System for Determining Thermal Parameters of Heat Insulation Materials

Stanisław Chudzik
  • Institute of Electronics and Control Systems, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Waldemar Minkina
  • Institute of Electronics and Control Systems, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-06-09 | DOI: https://doi.org/10.2478/v10178-011-0008-2

An Idea of a Measurement System for Determining Thermal Parameters of Heat Insulation Materials

The article presents the prototype of a measurement system with a hot probe, designed for testing thermal parameters of heat insulation materials. The idea is to determine parameters of thermal insulation materials using a hot probe with an auxiliary thermometer and a trained artificial neural network. The network is trained on data extracted from a nonstationary two-dimensional model of heat conduction inside a sample of material with the hot probe and the auxiliary thermometer. The significant heat capacity of the probe handle is taken into account in the model. The finite element method (FEM) is applied to solve the system of partial differential equations describing the model. An artificial neural network (ANN) is used to estimate coefficients of the inverse heat conduction problem for a solid. The network determines values of the effective thermal conductivity and effective thermal diffusivity on the basis of temperature responses of the hot probe and the auxiliary thermometer. All calculations, like FEM, training and testing processes, were conducted in the MATLAB environment. Experimental results are also presented. The proposed measurement system for parameter testing is suitable for temporary measurements in a building site or factory.

Keywords: thermal conductivity; artificial neural networks; inverse heat conduction problem

  • Al-Homoud, M. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40, 353-366.Google Scholar

  • Chudzik, S., Minkina, W. Method for determining thermal parameters, patent PL Nr 193596 B1, Int. Cl.8 G 01N 25/18, G 01K 17/00. (in Polish).Google Scholar

  • Minkina, W., Chudzik, S. (2004). Measurement of Thermal Parameters of Thermoinsulating Materials - Instrumentation and Methods. Publishing House of Czestochowa University of Technology. Czestochowa. (in Polish)Google Scholar

  • Beck, J.V. (1985). Inverse Heat Conduction. A Wiley-Interscience Publisher.Google Scholar

  • Alifanov, O., Artyukhin, E., Rumyantsev, S. (1995). Extreme Methods for solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems. New York.Google Scholar

  • Blackwell, J.H. (1953). Radial-axial heat flow in regions bounded internally by circular cylinders. Canadian Journal of Physics, 31(4), 472-479.CrossrefGoogle Scholar

  • Boer, J., Butter, J., Grosskopf, B., Jeschke, P. (1980). Hot wire technique for determining high thermal conductivities. Refractories Journal, 55, 22-28.Google Scholar

  • Sylos Cintra, J., Santos, W. (2000). Numerical analysis of sample dimensions in hot wire thermal conductivity measurements. Journal of the European Ceramic Society, 20, 1871-1875.CrossrefGoogle Scholar

  • Ventkaesan, G., Guang-Pu Jin. (2001). Measurement of thermophysical properties of poliurethane foam insulation during transient method. Int. J. Therm. Sci., 40, 133-144.Google Scholar

  • Xin-Gang Liang. (1995). The bounduary induced error on the measurement of thermal conductivity by transient hot wire method. Measurement Science and Technology, 6(5), 467-471.Google Scholar

  • Huaqing Xie, Shuxia Cheng. (2001). A fine needle probe for determining the thermal conductivity of penetrable materials. Measurement Science and Technology, 12(1), 58-62.Google Scholar

  • Hammerschmidt, U., Sabuga, W. (2000). Transient hot wire (THW) method: uncertainty assessment. International Journal of Thermophysics, 21(6), 1255-1278.CrossrefGoogle Scholar

  • Tavman, I.H., Tavman, S. (1999). Measurement of thermal conductivity of dairy products. Journal of Food Engineering, 41, 109-114.CrossrefGoogle Scholar

  • ASTM D 5334-00. (2000). Standard test methods for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM, 100 Barr-Harbor Dr. West Conshocken. PA 19428-2059, 04.08.Google Scholar

  • ASTM D 5930-01. (2001). Standard test method for thermal conductivity of plastics by means of a transient line source technique. ASTM, 100 Barr-Harbor Dr., West Conshocken, PA 19428-2059, 14.02.Google Scholar

  • IEEE STD 442-1981 IEEE guide for Thermal Resistivity Measurements. The Institute of Electrical and Electronics Engineers, Inc. 345 East 47 Street, New York, NY 10017Google Scholar

  • Chudzik, S., Gryś, S., Minkina, W. (2009). The application of the artificial neural network and hot probe method in thermal parameters determination of heat insulation materials Part 1 - thermal model consideration. Proc. of IEEE International Conference on Industrial Technology ICIT. Melbourne, 1-6.Google Scholar

  • Chudzik, S. (2009). The idea of using artificial neural network in measurement system with hot probe for testing parameters of heat-insulating materials. Measurement, 42, 764-770.Web of ScienceCrossrefGoogle Scholar

  • Chudzik, S., Minkina, W., Gryś, S. (2009). The application of the artificial neural network and hot probe method in thermal parameters determination of heat insulation materials. Part 2 - application of the neural network. Proc. of IEEE International Conference on Industrial Technology ICIT. Melbourne, 1-5.Google Scholar

  • Daponde, P., Grimaldi, D. (1998). Artifical neural networks in measurements. Measurement, 23, 93-115.CrossrefGoogle Scholar

  • Gajda, J. (2002). Uncertainty of an identification process. Metrology and Measurement Systems, 9(2), 89-101.Google Scholar

  • Gajda, J., Szyper, M. (1998). Modelling and simulation of measurement systems. AGH. Firma Jartek s.c. Krakow. (in Polish)Google Scholar

  • Taler, J. (1995). Theory and practice of identifications heat transfer processes. Ossolineum, Wroclaw. (in Polish)Google Scholar

  • Terpiłowski, J. (1991). Measurements of thermal diffusivity of solids. Scientific Papers of the Technical University of Lodz, 101(606), 161-191. (in Polish).Google Scholar

  • Minkina, W., Chudzik, S. (2003). Determination of thermal parameters of heat-insulating materials using artifical neural networks. Metrology and Measurement Systems, 10(1), 34-49.Google Scholar

  • Chudzik, S., Gryś, S., Minkina, W. (2009). Artificial neural networks in solution of inverse problem of heat diffusion. PAK, 55(2), 83-88. (in Polish).Google Scholar

  • Chudzik, S., Minkina, W. Method for determining thermal parameters. patent application P 382918. (in Polish).Google Scholar

About the article


Published Online: 2011-06-09

Published in Print: 2011-01-01


Citation Information: Metrology and Measurement Systems, Volume 18, Issue 2, Pages 261–274, ISSN (Print) 0860-8229, DOI: https://doi.org/10.2478/v10178-011-0008-2.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in