Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 18, Issue 2 (Jan 2011)

Issues

A Velocity Measurement Method Based on Scaling Parameter Estimation of a Chaotic System

Lidong Liu
  • School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jifeng Hu
  • School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zishu He
  • School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chunlin Han
  • School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huiyong Li
  • School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jun Li
  • School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-06-09 | DOI: https://doi.org/10.2478/v10178-011-0009-1

A Velocity Measurement Method Based on Scaling Parameter Estimation of a Chaotic System

In this paper, we propose a new method of measuring the target velocity by estimating the scaling parameter of a chaos-generating system. First, we derive the relation between the target velocity and the scaling parameter of the chaos-generating system. Then a new method for scaling parameter estimation of the chaotic system is proposed by exploiting the chaotic synchronization property. Finally, numerical simulations show the effectiveness of the proposed method in target velocity measurement.

Keywords: signal processing; parameter estimation; chaos; synchronization

  • Liu, Z., Zhu, X., Hu, W. (2007). Principles of chaotic signal radars. International Journal of Bifurcation and Chaos, 17 (5),1735-1739.CrossrefWeb of ScienceGoogle Scholar

  • Leung, H., Shanmugam, S., Xie, N.(2006). An ergodic approach for chaotic signal estimation at low SNR with application to ultra-wide-band communication. IEEE Trans. Signal Process., 54 (5), 1091-1103.CrossrefGoogle Scholar

  • Venkatasubramanian, V., Leung, H. (2005). A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging. IEEE Signal Processing Letters, 12 (6), 528-531.CrossrefGoogle Scholar

  • Ghosh, D. (2008). Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications. Phys. Rev. E, 78, 056211(1)-056211(5).Web of ScienceGoogle Scholar

  • Wang, K. et al (2008). Symbolic Vector Dynamics Approach to Initial Condition and Control Parameters Estimation of Coupled Map Lattices. IEEE Trans. Circuits and Systems I: Regular Papers, 55 (4), 1116-1124.Google Scholar

  • Thayaparan, T. et al (2008). Editorial Signal Processing in Noise Radar Technology. IET Radar, Sonar and Navigation, 2 (4), 229-232.Web of ScienceGoogle Scholar

  • Narayanan, R.M., Dawood, M. (2000). Doppler estimation using a coherent ultrawide-band random noise radar. IEEE Trans. Antennas and Propagation, 28 (6), 868-878.CrossrefGoogle Scholar

  • Carroll, T. (2005). Chaotic system for self-synchronizing Doppler measurement. Chaos, 15, 013109.1-013109.5.Google Scholar

  • Shi, Z., Qiao, S., Chen, K.S. (2007). Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator. Progress In Electromagnetics Research, 77, 1-14.Web of ScienceGoogle Scholar

  • Susek, W., Stec, B. (2010). Broadband microwave correlation of noise signals. Metrology and Measurement System, 17 (2), 289-299.Google Scholar

  • Pecora, L., Carroll, T. (1990). Synchronization in chaotic systems. Phys. Rev. Lett., 64 (6), 821-825.PubMedCrossrefGoogle Scholar

  • Wang, K., Pei, W., He, Z. (2007). Estimating initial conditions in coupled map lattices from noisy time series using symbolic vector dynamics. Phys. Lett. A, 367 (6), 316-321.Web of ScienceGoogle Scholar

  • He, Q., Wang, L., Liu, B. (2006). Parameter estimation for chaotic systems by particle swarm optimization. Chaos, Solitons & Fractals, 34 (2), 654-661.Web of ScienceGoogle Scholar

  • Gao, F., Lee, J., Li, Z. (2009). Parameter estimation for chaotic system with initial random noises by particle swarm optimization. Chaos, Solitons and Fractals, 42, 1286-1291.Web of ScienceGoogle Scholar

  • Fostin, H., Woafo, P. (2005). Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification. Chaos, Solitons & Fractals, 24 (12), 1363-1371.Google Scholar

  • Travassos X. L., Vieira D., Palade V. (2009). Noise Reduction in a Non-Homogenous Ground Penetrating Radar Problem by Multiobjective Neural Networks. IEEE Trans. Magnetics, 45 (3), 1454-1457.Web of ScienceCrossrefGoogle Scholar

About the article


Published Online: 2011-06-09

Published in Print: 2011-01-01


Citation Information: Metrology and Measurement Systems, ISSN (Print) 0860-8229, DOI: https://doi.org/10.2478/v10178-011-0009-1.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in