Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 18, Issue 4 (Jan 2011)

Issues

Measurement of Instantaneous Shaft Speed by Advanced Vibration Signal Processing - Application to Wind Turbine Gearbox

Radosław Zimroz / Jacek Urbanek / Tomasz Barszcz / Walter Bartelmus / Fabien Millioz
  • Département des Images et des Signaux, BP 46 - 961, rue de la Houille Blanche 38402 Saint Martin d'Hères Cedex
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nadine Martin
  • Département des Images et des Signaux, BP 46 - 961, rue de la Houille Blanche 38402 Saint Martin d'Hères Cedex
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-12-25 | DOI: https://doi.org/10.2478/v10178-011-0066-4

Measurement of Instantaneous Shaft Speed by Advanced Vibration Signal Processing - Application to Wind Turbine Gearbox

Condition monitoring of machines working under non-stationary operations is one of the most challenging problems in maintenance. A wind turbine is an example of such class of machines. One of effective approaches may be to identify operating conditions and investigate their influence on used diagnostic features. Commonly used methods based on measurement of electric current, rotational speed, power and other process variables require additional equipment (sensors, acquisition cards) and software. It is proposed to use advanced signal processing techniques for instantaneous shaft speed recovery from a vibration signal. It may be used instead of extra channels or in parallel as signal verification.

Keywords: speed tracking; speed estimation; instantaneous frequency; spectrogram; wind turbines

  • Stander, C. J., Heyns, P. S., Schoombie, W. (2002). Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions. Mechanical Systems and Signal Processing, 16(6), 1005-1024.CrossrefGoogle Scholar

  • Cempel, Cz., Tabaszewski M. (2007). Multidimensional condition monitoring of machines in nonstationary operation. Mechanical Systems and Signal Processing, 21, 1233-1241.CrossrefGoogle Scholar

  • Bartelmus, W., Zimroz, R. (2009). A new feature for monitoring the condition of gearboxes in non-stationary operating conditions. Mechanical Systems and Signal Processing, 23(5), 1528-1534.CrossrefWeb of ScienceGoogle Scholar

  • Grzadziela, A. (2007). An analysis of possible assessment of hazards to ship shaft line, resulting from impulse load. Polish Maritime Research, 14(3), 12-20.Web of ScienceGoogle Scholar

  • Bartelmus, W., Chaari, F., Zimroz, R., Haddar, M. (2010). Modelling of gearbox dynamics under time varying non-stationary operation for distributed fault detection and diagnosis. European Journal of Mechanics - A/Solids, 29, 637-646.Google Scholar

  • Stander, C. J., Heyns, P. S., Schoombie, W. (2002). Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions. Mechanical Systems and Signal Processing, 16(6), 1005-1024.CrossrefGoogle Scholar

  • Zhan, Y., Makis, Y., Jardine, A. K. S. (2004). Adaptive state detection of gearboxes under varying load conditions based on parametric modelling. Mechanical Systems and Signal Processing, 20(1), 188-221.Google Scholar

  • Timusk, M., Lipsett, M., Mechefske, C. K. (2008). Fault detection using transient machine signals. Mechanical Systems and Signal Processing, 23, 1724-1749.Web of ScienceCrossrefGoogle Scholar

  • Baydar, N., Ball, A. (2002). Detection of gear deterioration under varying load conditions by using the instantaneous power spectrum. Mechanical Systems and Signal Processing, 14(6), 907-921.Google Scholar

  • Urbanek, J., Barszcz, T., Sawalhi, N., Randall, R. B. (2011). Comparison of amplitude based and phase based methods for speed tracking in application to wind turbines. Metrology and Measurement Systems, 18(2), 295-304.Web of ScienceGoogle Scholar

  • Barszcz, T. Randall, R. B. (2009). Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mechanical Systems And Signal Processing, 23(4), 1352-1365.Web of ScienceGoogle Scholar

  • Barszcz, T. (2004). Proposal of new method of mechanical vibration measurement. Metrology and Measurement Systems, 11(4), 409-421.Google Scholar

  • Barszcz, T., Bielecka, M., Bielecki, A., Wójcik, M. (2011). Wind turbines states classification by a fuzzy-ART neural network with a stereographic projection as a signal normalization. Lecture Notes in Computer Science, 6594/2011, 225-234.Google Scholar

  • Barszcz, T., Bielecki, A., Wójcik, M. (2010). ART-type artificial neural networks applications for classification of operational states in wind turbines. Lecture Notes in Computer Science, 6114/2010, 11-18.Google Scholar

  • Bartelmus, W, Zimroz, R (2009). Vibration condition monitoring of planetary gearbox under varying external load. Mechanical Systems and Signal Processing, 23(1), 246-257.Web of ScienceCrossrefGoogle Scholar

  • Coats, M. D., Sawalhi, N., Randall, R. B. (23-25 Nov 2009). Extraction of tach information from a vibration signal for improved synchronous averaging. Proceedings of Acoustics. Adelaide. Australia.Google Scholar

  • Boashash, B. (1992). Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1: Fundamentals. Proceedings of the IEEE, 80(4), 520-538.CrossrefGoogle Scholar

  • Boashash, B. (1992). Estimating and Interpreting the Instantaneous Frequency of a Signal-Part 2: Algorithms and Applications. Proceedings of the IEEE, 80(4), 540-568.CrossrefGoogle Scholar

  • Borkowski, D. (2005). On-line instantaneous frequency estimation and voltage/current coherent resampling metod. Metrology and Measurement Systems, 12(1), 59-75.Google Scholar

  • Sedlacek, M., Krumpholc, M. (2005). Digital measurement of phase difference - a comparative study of DSP algorithms. Metrology and Measurement Systems, 12(4), 427-449.Google Scholar

  • Bonnardot, F., El Badaoui, M., Randall, R. B., Danière, J., Guillet, F. (2005). Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation). Mechanical Systems and Signal Processing, 19, 766-785.Google Scholar

  • Wallace, D. A., Darlow, M. S. (1988). Hilbert transform techniques for measurement of transient gear speeds. Mechanical Systems and Signal Processing, 2(2), 187-194.Web of ScienceCrossrefGoogle Scholar

  • Combet, F., Gelman, L. (2007). An automated methodology for performing time synchronous averaging of a gearbox signal without speed sensor. Mechanical Systems and Signal Processing, 21(6), 2590-2606.Web of ScienceCrossrefGoogle Scholar

  • Combet, F., Zimroz, R., (2009). A new method for the estimation of the instantaneous speed relative fluctuation in a vibration signal based on the short time scale transform. Mechanical Systems and Signal Processing, 23(4), 1382-139.Web of ScienceCrossrefGoogle Scholar

  • Zimroz, R., Combet, F. (2006). Time varying outer load and speed estimation by vibration analysis - application to planetary gearbox diagnosis in a mining bucket wheel excavator. Diagnostics, 4, 7-14.Google Scholar

  • Millioz, F., Martin N. (2006). Time-Frequency Segmentation for Engine Speed Monitoring. Proceedings of Thirteen International Congress on Sound and Vibration ICSV13, Vienna, Austria.Google Scholar

  • Zimroz R., Millioz F., Martin N. (2010). A procedure of vibration analysis from planetary gearbox under non-stationary cyclic operations for instantaneous frequency estimation in time-frequency domain. Proceedings of Condition Monitoring, Stratford Upon Avon, UK.Google Scholar

  • Proceedings of the IEEE. (1996). Special Issue on Time Frequency Analysis, 84(9), 1194-1345.Web of ScienceGoogle Scholar

  • Gryllias, K., Antoniadis, I. (2009). Application of the Energy operator separation algorithm (EOSA) for the instantaneous amplitude and Frequency calculation of nonlinear dynamic systems response. Proceedings of the ASME International Design Engineering Conference and Computers and Information in Engineering Conference IDECT/CIE, San Diego, USA.Google Scholar

  • Christos, Y., Gryllias, K., Antoniadis, I. (2009). Instantaneous frequency in rotating machinery using a harmonic signal decomposition (HARD) parametric method. Proceedings of the ASME International Design Engineering Conference and Computers and Information in Engineering Conference IDECT/CIE, San Diego, USA.Google Scholar

  • Jabloun, M., Martin, N., Leonard, F., Vieira, M. (2008). Estimation of the amplitude and the frequency of nonstationary short-time signals. Signal Processing, 88(7), 1636-1655.CrossrefWeb of ScienceGoogle Scholar

About the article


Published Online: 2011-12-25

Published in Print: 2011-01-01


Citation Information: Metrology and Measurement Systems, ISSN (Print) 0860-8229, DOI: https://doi.org/10.2478/v10178-011-0066-4.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yunpeng Guan, Ming Liang, and Dan-Sorin Necsulescu
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, Volume 231, Number 15, Page 2868
[2]
Xiaoliang Zhu, Li Du, and Jiang Zhe
Mechanical Systems and Signal Processing, 2017, Volume 83, Page 296
[3]
Ali Akbar Tabrizi, Hussein Al-Bugharbee, Irina Trendafilova, and Luigi Garibaldi
Meccanica, 2017, Volume 52, Number 4-5, Page 1201
[4]
Pierre Takoutsing, René Wamkeue, Mohand Ouhrouche, Fouad Slaoui-Hasnaoui, Tommy Tameghe, and Gabriel Ekemb
Energies, 2014, Volume 7, Number 4, Page 2595
[8]
P. Borghesani, P. Pennacchi, S. Chatterton, and R. Ricci
Mechanical Systems and Signal Processing, 2014, Volume 44, Number 1-2, Page 118
[9]
Michael D. Coats and Robert B. Randall
Mechanical Systems and Signal Processing, 2014, Volume 44, Number 1-2, Page 86
[10]
Radoslaw Zimroz, Walter Bartelmus, Tomasz Barszcz, and Jacek Urbanek
Mechanical Systems and Signal Processing, 2014, Volume 46, Number 1, Page 16
[11]
Y. Yang, X.J. Dong, Z.K. Peng, W.M. Zhang, and G. Meng
Journal of Sound and Vibration, 2015, Volume 335, Page 350
[12]
Jacek Urbanek, Tomasz Barszcz, and Jerome Antoni
Applied Acoustics, 2014, Volume 77, Page 184
[13]
Tianyang Wang, Ming Liang, Jianyong Li, and Weidong Cheng
Mechanical Systems and Signal Processing, 2014, Volume 45, Number 1, Page 139
[14]
A. Jablonski, T. Barszcz, M. Bielecka, and P. Breuhaus
Measurement, 2013, Volume 46, Number 1, Page 727
[15]
Jacek Urbanek, Tomasz Barszcz, and Jerome Antoni
Mechanical Systems and Signal Processing, 2013, Volume 38, Number 1, Page 96

Comments (0)

Please log in or register to comment.
Log in