[1] Cohen, L. (1995). *Time-Frequency Analysis*. Prentice Hall, Englewood Cliffs, NJ.

[2] Lusin, T., Agrez, D. (2011). Estimation of the amplitude square using the interpolated DFT. *Metrol.Meas. Syst.*, 18(4), 583-596. [Web of Science]

[3] Hlawatch, F., Boudreaux-Bartels, G.F. (1992). Linear and quadratic time frequency signal representations. *IEEE Signal Processing Magazine*, 9(4), 21-67. [Crossref]

[4] Shafi, I., Ahmad, J., Shah, S.I., Kashif, F.M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. *EURASIP Journal on Advances in Signalprocessing*. Artcle ID 673539, doi: 10.1155/2009/673539.

[5] Boashash, B. (2003). *Time-Frequency Signal Analysis and Processing*. Prentice-Hall, Upper Saddle River, NJ, USA.

[6] Cohen, L. (1989). Time-frequency distributions-A review. In *Proc. IEEE*, 77, 941-981.

[7] Classen, T.A.C.M., Mecklenbrauker, W.F.G. (1980). The Wigner distribution - a tool for time-frequency signal analysis, part I: Continuous time signals. *Philips J. Res.*, 35, 217-250.

[8] Gröchenig, K. (2001). *Foundations of Time-Frequency Analysis*. Birkhäuser, Boston.

[9] Lerga, J., Sucic, V., Boashash, B. (2011). An Efficient Algorithm for Instantaneous Frequency Estimation of Nonstationary Multicomponent Signals in Low SNR. *EURASIP J. on Adv. In Signalprocessing*, Artcle ID 725189, doi: 10.1155/2011/725189. [Web of Science]

[10] Hlawatsch, F., Flandrin, P. (1997). *The interference structure of the Wigner distribution and relatedtime-frequency signal representations, in The Wigner Distribution-Theory and Applications in SignalProcessing*, Elsevier, Amsterdam, Netherlands, 59-133.

[11] Qian, S. (2002). *Introduction to Time-Frequency and Wavelet Transforms*. Upper Saddle River, New Jersey, Prentice-Hall.

[12] Hlawatsch, F., Manickam, T.G., Urbanke, R.L., Jones, W. (1995). Smoothed pseudo-Wigner distribution, choi-williams distribution, and cone-kernel representation: Ambiguity-domain analysis and experimental comparison. *Signal Process.*, 43(2). [Crossref]

[13] Arce, G.R., Hasan, S.R. (2000). Elimination of interference terms of the discrete Wigner distribution using nonlinear filtering. *IEEE Trans. Signal Processing, *48(8), 2321-2331. [Crossref]

[14] Qazi, S., Georgakis, A., Stergioulas, L.K., Bahaei, M.S. (2007). Interference suppression in the Wigner distribution using fractional Fourier transformation and signal synthesis. *IEEE Trans. Signal Process.*, 55, 3150-3154. [Web of Science]

[15] Khan, N.A., Taj, I.A., Jaffri, N., Ijaz, S. (2011). Cross-term elimination in Wigner distribution based on 2D signal processing techniques. *Signal Processing, Advances in Fractional Signals and Systems*, 91(3), 590-599.

[16] Sejdic, E., Djurovic, I., Stankovic, L. (2011). Fractional Fourier transform as a signal processing tool: An overview of recent developments. *Signal Processing*, 91, 1351-1369. [Web of Science]

[17] Pei, S.C., Ding, J.J. (2007). Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing. *IEEE Trans. Signal Processing*, 55(10), 4839-4850. [Crossref] [Web of Science]

[18] Cho, S.H., Jang, G., Kwon, S.H. (2010). Time-Frequency Analysis of Power-Quality Disturbances via the Gabor-Wigner Transform. *IEEE Trans. Power Deliver.*, 25(1), 494-499. [Web of Science]

[19] Szmajda, M., Górecki, K., Mroczka, J. (2010). Gabor Transform, SPWVD, Gabor-Wigner Transform and Wavelet Transform - Tools for Power Quality monitoring. *Metrol. Meas. Syst.*, 17(3), 383-396.

[20] Rioul, O., Vetterli, M. (1991). Wavelets and Signal Processing. *IEEE SP Magazine*, 8, 14-38. [Web of Science]

[21] Allen, R.L., Mills, D.W. (2004). *Signal Analysis: Time, Frequency, Scale, and Structure*. New York: Wiley-Interscience.

[22] Hlawatsch, F. (1984). Interference terms in the Wigner distribution. In *Proc. Int. Conf. on Digital Signal**Processing*, Florence, Italy, 363-367.

[23] Stanković, L.J., Alieva, T., Bastiaans, M.J. (2003). Time-frequency signal analysis based on the windowed fractional Fourier transform. *Signal Process.*, 83(11), 2459-2468. [Crossref]

[24] Namias, V. (1980). The fractional order Fourier transform and its applications to quantum mechanics. *J. Inst. Math Appl*., 25, 241-265. [Crossref]

[25] Mendlovic, D., Ozaktas, H.M. (1993). Fractional Fourier transforms and their optical implementation. *J. Opt. Soc. Am. A*, 10, 1875-1881. [Crossref]

[26] Kutay, M.A., Ozaktas, H.M., Arikan, O., Onural, L. (1997). Optimal filter in fractional Fourier domains. *IEEE Trans. Signal Process.*, 45(5), 1129-1143. [Crossref]

[27] Almeida, L.B. (1994). The fractional Fourier transform and time-frequency representations. *IEEE Trans.**Signal Process.*, 42, 3084-3091.

[28] Saxena, R., Sing, K. (2005). Fractional Fourier transform: A novel tool for signal processing. *J. Indian**Institute of Science*., 85, 11-26.

[29] Acharya, T., Ray, A. (2005). *Image Processing: Principles and Applications*. Wiley Interscience, Hoboken, NJ.

[30] Training a support vector machine in the primal, Neural Computation. (2007). 19(5), 1155-1178. [Web of Science] [PubMed]

[31] /http://www.dsp.rice.edu/software/TFA/RGK/BAT/batsig.bin.ZS.

[32] Williams, W.J., Brown, M., Hero, A. (1991). Uncertainty, information and time frequency distributions. In *SPIE, Advanced Signal Processing Algorithms*, 1556, 144-156.

[33] Jones, D., Park, T., (1992). A resolution comparison of several time-frequency representations. *IEEE**Trans. Signal Process*., 40, 413-420.

## Comments (0)