Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …
Volume 19, Issue 1


Sensors and Systems for the Detection of Explosive Devices - An Overview

Zbigniew Bielecki / Jacek Janucki / Adam Kawalec / Janusz Mikołajczyk / Norbert Pałka / Mateusz Pasternak / Tadeusz Pustelny
  • Faculty of Mathematics and Physics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tadeusz Stacewicz
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warsaw
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacek Wojtas
Published Online: 2012-03-20 | DOI: https://doi.org/10.2478/v10178-012-0001-3

Sensors and Systems for the Detection of Explosive Devices - An Overview

The paper presents analyses of current research projects connected with explosive material sensors. Sensors are described assigned to X and γ radiation, optical radiation sensors, as well as detectors applied in gas chromatography, electrochemical and chemical sensors. Furthermore, neutron techniques and magnetic resonance devices were analyzed. Special attention was drawn to optoelectronic sensors of explosive devices.

Keywords: Explosive device sensors; detection of explosive materials

  • Woodfin, R. L. (2007). Trace chemical sensing of explosives. John Wiley & Sons, Inc., Hoboken, New Jersey.Google Scholar

  • Hussein, E. M. A., Walker, E. J. (1998). Review of one-side approaches to radiographic imaging for the detection of explosives and narcotics. Radiation Measurements, 29(6), 581-591.CrossrefGoogle Scholar

  • Kanu, A. B., Dwivedi, P., Tam, M., Herbert, L. M., Hill, H. (2008). Ion mobility-mass spectrometry. Mass Spectrom., 43, 1-22. Wiley Inter Science (www.interscience.wiley.com) DOI:10.1002/jms.1383. www.interscience.wiley.comCrossref

  • Reno, J., Fisher, R. C., Robinson, L., Brennan, N., Travis, J. (1999). Guide for the selection of commercial explosives detection systems for low enforcement application. U. S. National Institute of Justice. Washington.Google Scholar

  • Singh, S., Singh, M. (2003). Review of Explosives detection systems for aviation security. Signal Processing, 83, 31-55.Google Scholar

  • Harding, G. (2004). Radiation, X-ray scatter tomography for explosives detection. Physics and Chemistry, 71, 869-881.Google Scholar

  • Vogel, H. (2007). Search by X-rays applied technology. European Journal of Radiology, 63, 227-236.Google Scholar

  • Liu, Y., Sowerby, B. D., Tickner, J. R. (2008). Comparison of neutron and high-energy X-ray dual-beam radio- graphy for air cargo inspection. Applied Radiation and Isotopes, 66, 463-473.Google Scholar

  • Dicken, A., Rogers, K., Evans, P., Rogers, J., Chan, J. W. (2010). The separation of X-ray diffraction patterns for threat detection. Applied Radiation and Isotopes, 68, 439-443.Google Scholar

  • Eger, L., Do, S., Ishwar, P., Karl, W. C., Pien, H. (2011). A learning-based approach to explosives detection using multi-energy x-Ray computed tomography. Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference in Prague, 2004-2007.Google Scholar

  • Faust, A. A., Rothschild, R. E., Leblanc, P., McFee, J. E. (2009). Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection. IEEE Transactions on Nuclear Science, 56(1).CrossrefGoogle Scholar

  • Buffler, A. (2004). Contraband detection with fast neutrons. Radiation Physics and Chemistry, 71, 853-861.Google Scholar

  • Reber, E. L., Larry, C., Blackwood, G. (2007). Explosives Detection System: Development and Enhancements. Sens Imaging, 8, 121-130.Google Scholar

  • Runkle, R. C., White, T. A. (2009). Photon and neutron interrogation techniques for chemical explosives detection in air cargo. Nuclear Instruments and Methods in Physics Research A, 603, 510-528.Google Scholar

  • Brooks, F. D., Drosg, M., Smit, F. D., Wikner, C. (2011). Detection of explosive remnants of war by neutron thermalisation. Applied Radiation and Isotopes, 70(1), 119-127.Google Scholar

  • Sharma, S. K., Jakhar, S., Shukla, R., Shyama, A., Raob, C. V. S. (2010). Explosive detection system using pulsed 14MeV neutron source. Fusion Engineering and Design, 85, 1562-1564.Google Scholar

  • Papp, A., Csikai, J. (2011). Detection and identification of explosives and illicit drugs using neutron based techniques. J. Radioanal. Nucl. Chem., 288, 363-371.Google Scholar

  • Smith, J. A. S., Rayner, T. J., Rowe, M. D., Barras, J., Peirson, N. F., Stevens, A. D., Althoefer, K. (2010). Magnetic field-cycling NMR and 14N, 17O quadrupole resonance in the explosive pentaerythritoltetranitrate (PETN). Journal of Magnetic Resonance, 204, 139-144.Google Scholar

  • Fischer, N., Klapötke, T. M., Stierstorfer, J., Wiedemann, C. (2011). 1-Nitratoethyl-5- nitriminotetrazole derivatives - Shaping future high explosives. Polyhedron, 30, 2374-2386.CrossrefGoogle Scholar

  • Regulla, D. (2000). From dating to biophysics D20 years of progress in applied ESR spectroscopy. Applied Radiation and Isotopes, 52, 1023-1030.CrossrefGoogle Scholar

  • Gudmundson, E., Jakobsson, A., Stoica, P. (2009). Based Explosives Detection-An Overview. IEEE - Transection on Signal Processing, 56(3) 887-894.Google Scholar

  • Zhang, X., Balkır, S., Hoffman, M. W., Schemm, N., Robust, A. (2010). CMOS Receiver Front-end for Nuclear Quadrupole Resonance Based Explosives Detection. IEEE - Circuits and Systems, 53(8), 1093-1096.Google Scholar

  • Wang, X., Liu, P., Fox, K. A., Tang, J., Colón Santana, J. A., Belashchenko, K., Dowben, P. A., Sui, Y. (2010). The effects of Gd doping and oxygen vacancies on the properties of EuO films prepared via pulsed laser deposition. IEEE Trans. Magn., 46, 1879-1882.Google Scholar

  • Smith, J. A. S., Blanz, M., Rayner, T. J., Rowe, M. D., Bedford, S., Althoefer, K. (2011). 14N Quadrupole Resonance and 1H T1 Dispersion in the Explosive RDX. Journal of Magnetic Resonance, 213(1), 191-196.Google Scholar

  • Gregorovic, A., Apih, T. (2009). TNT detection with 14N NQR: Multipulse sequences and matched filter. Journal of Magnetic Resonance, 198, 215-221.Google Scholar

  • Osa, T. M., Cerionia, L. M., Forguez, J., Olle, J. M., Pusiola, D. J. (2007). NQR: From imaging to explosives and drugs detection. Physica B, 389, 45-50.Google Scholar

  • Ostafin, M., Nogaj, B. (2007). 14N-NQR based device for detection of explosives in landmines. Measurement, 40, 43-54.Google Scholar

  • Kuznitsov, A. V., Osetrov, O. I. (2006). Detection of improvised explosives and explosive devices in Detection and disposal improvised explosives. Springer.Google Scholar

  • Stitzel, S. E., Cowen, L. J., Albert, K. J., Walt, D. R. (2001). Array-to-Array Transfer of an Artificial Nose Classifier. Anal. Chem., 73(21), 5266-5271.Google Scholar

  • Koscho, M. E., Grubbs, R. H., Lewis, N. S. (2002). Properties of Vapor Detector Arrays Formed through Plasticization of Carbon Black-Organic Polymer Composites. Anal. Chem., 74, 1307-1315.Google Scholar

  • Wohltejen, H., Snow, A. W. (1998). Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal. Chem., 70, 2856-2859.Google Scholar

  • Pearce, T. C., Schiffman, S. S., Nagle, H. T., Gardner, J. W. (2003). Handbook of machine olfaction. Wiley-VCH, Weinheim.Google Scholar

  • Jakubik, W., Urbanczyk, M., Maciak, E., Pustelny, T. (2008). Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems. Bulletin of Polish Academy of Sciences: Technical Sciences, 56(2), 133-138.Google Scholar

  • Murugarajan, A., Samuel, G. L. (2011). Measurement, modeling and evaluation of surface parameter using capacitive-sensor-based measurement system, Metrology and Measurement Systems, 18(3), 403-418.Google Scholar

  • http://science.nasa.gov/science-news/science-at-nasa/2004/06oct_enose

  • http://www.prenhall.com/settle/chapters/ch31.pdf

  • Collin, O. L., Niegel, C., DeRhodes, K. E., McCord, B., Jackson, G. P. (2006). Fast Gas Chromatography of Explosive Compounds Using a Pulsed-Discharge Electron Capture Detector. Journal of Forensic Sciences, 51, 815-818.PubMedCrossrefGoogle Scholar

  • http://www.interactpartnership.co.uk/members/technologies/23.pdf

  • www.iut-berlin.info/fileadmin/user_upload/Literatur/Poster_Symposium_ISADE_FINEX.pdf

  • http://sniffexquestions.blogspot.com/2007/09/what-about-ade-100-ade-101-ade650-ade.html

  • http://www.scribd.com/doc/56952947/38/The-Electron-Capture-Detector

  • Gut, K., Zakrzewski, A., Pustelny, T. (2010). Sensitivity of polarimetric waveguide interferometer for different waveguides. Acta Physica Polonica A, 118(6), 1140-1142.Google Scholar

  • Toaland, S. J., Trogler, W. (2006). Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem., 16, 2871-2883.Google Scholar

  • Staples, E. J. (2004). Detecting Chemical Vapours from Explosives Using the zNose®, an Ultra-High Speed Gas Chromatograph, Electronic Noses & Sensors for the Detection of Explosives. NATO Science Series, 159, 235-248.Google Scholar

  • Casalinuovo, I. A., Di Pierro, D., Coletta, M., Di Francesco, P. (2006). Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection. Sensors, 6, 1428-1439.CrossrefGoogle Scholar

  • Wilson, A. D., Baietto, M. (2009). Applications and Advances in Electronic-Nose Technologies. Sensors, 9, 5099-5148.CrossrefGoogle Scholar

  • Eiceman, G., Karpas, Z. (2005). Ion Mobility Spectrometry. CRC Press.Google Scholar

  • Singh, S. (2007). Sensors - an effective approach for the detection of explosives. Journal of Hazardous Materials, 144, 15-28.Google Scholar

  • Naal, Z., Park, J. H., Bernhard, S., Shapleigh, J. P., Batt, C. A., Abrun, H. D. (2002). Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Analytical Chemistry, 74, 140.PubMedCrossrefGoogle Scholar

  • Wilson, R., Clavering, C., Hutchinson, A. (2003). Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT. Journal of Electroanalytical Chemistry, 557, 109-119.Google Scholar

  • Hatab, N. A., Eres, G., Hatzingerc, P. B., Gua, B. (2010). Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy. J. Raman Spectroscopy, 41, 1131-1136.CrossrefGoogle Scholar

  • Smulko, J., Gnyba, M., Kwiatkowski, A. (2011). Detection of illicit chemicals by portable Raman spectrometer. Bulletin Polish Academy of Science. Technical Science (to be published).Google Scholar

  • http://www.sciencedaily.com/releases/2011/05/110509161759.htm

  • Kosterev, A. A., Tittel, F. K., Serebryakov, D. V., Malinovsky, A. L., Morozov, I. V. (2005). Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum., 76, 043105.Google Scholar

  • Pedersen, M., McClelland, J. (2005). Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications. Proc. SPIE, 108, 5732.Google Scholar

  • Laurila, T., Cattaneo, H., Koskinen, V., Kauppinen, J., Hernberg, R. (2005). Diode laser-based photoacoustic spectroscopy with interferometrically- enhanced cantilever detection. Opt. Express, 13, 2453-2458.Google Scholar

  • http://www.sciencedaily.com/releases/2008/06/080625153328.htm

  • Filenko, D., Ivanov, T., Volland, B. E., Ivanova, K., Rangelow, I. W., Nikolov, N., Gotszalk, T., Mielczarski, J. (2008). Experimental setup for characterization of self-actuated microcantilevers with piezoresistive readout for chemical recognition of volatile substances. Rev. Sci. Instr., 79, 094101-6.Google Scholar

  • http://www.arete.com/index.php?view=stil_mcm

  • Schubert, H., Kuznetsov, A. (2005). Detection and disposal of improvised explosives. Springer.Google Scholar

  • Onat, B. M., Carver, G. Itzler, M. (2009). A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging. Proc. SPIE, 7310, 731004-1.Google Scholar

  • Cremers, D. A., Radziemski, L. J. (2006). Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons.Google Scholar

  • Michel, A. P. M. (2010). Review: Applications of single-shot laser-induced breakdown spectroscopy. Spectrochim. Acta B, 65, 185-191.Google Scholar

  • Fortes, F. J., Laserna, J. J. (2010). The development of field able laser-induced breakdown spectrometer: No limits on the horizon. Spectrochim. Acta B, 65, 975-990.Google Scholar

  • Gottfried, J. L., De Lucia, Jr F. C., Munson, C. A., Miziolek, A. W. (2009). Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal. Bioanal. Chem., 395, 283-300.Google Scholar

  • Weckenmann, A., Bernstein, J. (2010). Optical multi-sensor metrology for extruded profiles. Metrology and Measurement Systems, 17(1), 47-54.Google Scholar

  • Lazic, V., Palucci, A., Jovicevic, S., Poggi, C., Buono, E. (2009). Analysis of explosive and other residues by laser induced breakdown spectroscopy. Spectrochim. Acta B, 64, 1028-1039.Google Scholar

  • Lucena, P., Dona, A., Tobaria, L. M., Laserna, J. J. (2011). New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy. Spectrochim. Acta B, 66, 12-20.Google Scholar

  • Lazic, V., Palucci, A., Jovicevic, S., Carpanese, M. (2011). Detection of explosives in traces by laser induced breakdown spectroscopy: Differences from organic interferents and conditions for a correct classification. Spectrochim. Acta B, 66, 644-655.Google Scholar

  • De Lucia, Jr F. C., Gottfried, J. L. (2010). Characterization of a series of nitrogen-rich molecules using laser- induced breakdown spectroscopy. Propellants Explos. Pyrotech., 35, 268-277.CrossrefGoogle Scholar

  • Sovova, K., Dryahina, K., Spanel, P., Kyncl, M., Civis, S. (2010). A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-VIS spectrometry. Analyst, 135, 1106-1114.Google Scholar

  • Tran, M., Sun, Q., Smith, B. W., Winefordner, J. D. (2001). Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy. J. Anal. At. Spectrom., 16, 628-632.Google Scholar

  • Gottfried, J. L., De Lucia, Jr F. C., Miziolek, A. W. (2009). Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 24, 288-296.Google Scholar

  • Babushok, V. I., De Lucia, Jr. F. C., Gottfried, J. L., Munson, C. A., Miziolek, A. W. (2006). Double pulse laser ablation and plasma, laser induced breakdown spectroscopy signal enhancement. Spectrochim. Acta B, 61, 999-1014.Google Scholar

  • Lasheras, R. J., Bello-Galvez, C., Rodriguez-Celis, E. M., Anzano, J. (2011). Discrimination of organic solid materials by LIBS using methods of correlation and normalized coordinates. J. Hazard. Mat., 192, 704-713.Google Scholar

  • Kwiatkowski, A., Gnyba, M., Smulko, J., Wierzba, P. (2010). Algorithms of chemicals detection using raman spectra. Metrology and Measurement Systems, 17(4), 549-560.Google Scholar

  • De Lucia, Jr F. C., Gottfried, J. L., Munson, C. A., Miziolek, A. W. (2008). Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues. Appl. Opt., 47, G112-G120.Google Scholar

  • Clegg, S. M., Sklute, E., DarbyDyare, M., Barefield, J. E., Wiens, R. C. (2009). Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochim. Acta B, 64, 79-88.Google Scholar

  • Koujelev, A., Sabsabi, M., Motto-Ros, V., Laville, S., Lui, S. L. (2010). Laser-induced breakdown spectroscopy with artificial neural network processing for material identification. Planet. Space Sci., 58, 682-690.CrossrefGoogle Scholar

  • Koren, Y., Carmel, L. (2004). Robust Linear Dimesionality Reduction. IEEE Trans. Visualisation and computer Graphics, 10, 459-470.CrossrefGoogle Scholar

  • Hoehse, M., Mory, D., Florek, S., Weritz, F., Gornushkin, I., Panne, U. (2009). A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochim. Acta B, 64, 1219-1227.Google Scholar

  • Susek, W. (2010). Thermal Microwave Radiation for Subsurface Absolute Temperature Measurement. Acta Physica Polonica A, 118, 6, 1246-1249.Google Scholar

  • Seguin, S. (2009). Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation. Ph.D. dissertation, Missouri S&T.Google Scholar

  • Guelle, D., Smith, A., Lewis, A., Bloodworth, T. (2003). Metal detector handbook for humanitarian demining. European Communities.Google Scholar

  • Daniels, D. J. (2009). Ground Penetrating Radar for Buried Landmine and IED Detection, Unexploded Ordnance Detection and Mitigation. NATO Science for Peace and Security Series B: Physics and Biophysics.Google Scholar

  • Kaczmarek, P., Karczewski, J., Łapiński, M., Miluski, W., Pasternak, M., Silko, D. (2011). Stepped frequency continuous wave radar unit for unexploded ordnance and improvised explosive device detection. International Radar Symposium Proceedings, 105-109.Google Scholar

  • Yun-Shik, L. (2008). Principles of Terahertz Science and Technology. Springer.Google Scholar

  • Kemp, M. C. (2011). Explosives Detection by Terahertz Spectroscopy-A Bridge Too Far? IEEE Transactions on Terahertz Science and Technology, 1, 282-292.Google Scholar

  • Dragoman, D., Dragoman, M. (2004). Terahertz fields and applications. Prog. Quantum Electron., 28, 1-66.CrossrefGoogle Scholar

  • Palka, N. (2011). THz reflection spectroscopy of explosives measured by Time Domain Spectroscopy. Acta Physica Polonica A, 120(4), 713-715.Google Scholar

  • Chalmers, J. M. (1999). Mid-infrared spectroscopy. Spectroscopy in process analysis. CRC Press LLC. 117, ISBN 1841270407.Google Scholar

  • http://www.ipm.fraunhofer.de

  • http://www.teledyne-ai.com/pdf/lga-3500.pdf

  • Busch, K. W., Busch, M. A. (1999). Cavity-Ringdown Spectroscopy, An Ultratrace-Absorption Measurement Technique. ACS Symposium series, Washington DC.Google Scholar

  • Berden, G., Peeters, R., Meijer, G. (2000). Cavity ring-down spectroscopy. Experimental schemes and applications. Int. Rev. Phys. Chem., 19(4), 565-607.CrossrefGoogle Scholar

  • Kasyutich, V. L., Bale, C. S. E., Canosa-Mas, C. E., Pfrang, C., Vaughan, S., Wayne, R. P. (2003). Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode. Appl. Phys. B, 76(6), 691-698.CrossrefGoogle Scholar

  • Wojtas, J. (2011). Detection of optical radiation in NOx optoelectronic sensors employing cavity enhanced absorption spectroscopy. Chapter in Optoelectronics - Devices and Applications, Intech Publishers, Vienna, Austria, ISBN 978-953-307-576-1, 147-172.Google Scholar

  • Wojtas, J., Czyzewski, A., Stacewicz, T., Bielecki, Z. (2006). Sensitive detection of NO2 with Cavity Enhanced Spectroscopy. Optica Applicata, 36(4), 461-467.Google Scholar

  • Wojtas, J., Bielecki, Z. (2008). Signal processing system in the cavity enhanced spectroscopy. Opto-Electron. Rev., 16(4), 44-51.Google Scholar

  • Bielecki, Z., Stacewicz, T., Wojtas, J., Nowakowski, M., Mikołajczyk, J. (2011). Polish patent application No P.394439.Google Scholar

  • Wojtas, J., Mikolajczyk, J., Nowakowski, M., Rutecka, B., Medrzycki, R., Bielecki, Z. (2011). Appling CEAS method to UV, VIS, and IR spectroscopy sensors. Bulletin of the Polish Academy of Sciences, Technical Sciences, 59(4) (in press).CrossrefGoogle Scholar

  • Wojtas, J. (2011). Polish patent application No P.395707.Google Scholar

  • Stacewicz, T., Wojtas, J., Bielecki, Z., Nowakowski, M., Mikołajczyk, J., Mędrzycki, R., Rutecka, B. (2012). Cavity Ring Down Spectroscopy: detection of trace amounts of matter. Opto-Electron. Rev. 20(1), 34-41 (in press).Google Scholar

  • Oxley, J. C. (1995). Explosive detection: potential problems. Proc. SPIE, 2511, 217-225.Google Scholar

  • Pustelny, T., Maciak, E., Opilski, Z., Bednorz, M. (2007). Optical interferometric structures for application in gas sensors, Optica Applicata, 37(102), 187-194.Google Scholar

  • Struk, P., Pustelny, T., Golaszewska, K., Kaminska, E., Borysewicz, M., Ekielski, M., Piotrowska, A. (2011). Photonic structures with grating couplers based on ZnO. Opto-electronics Review, 19(4), 462-467.Google Scholar

About the article

Published Online: 2012-03-20

Published in Print: 2012-01-01

Citation Information: Metrology and Measurement Systems, Volume 19, Issue 1, Pages 3–28, ISSN (Print) 0860-8229, DOI: https://doi.org/10.2478/v10178-012-0001-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sandeep G. Surya, Sunil Kumar Samji, Pasam Dhamini, Bs Pavan Ganne, Prashant Sonar, and V. Ramgopal Rao
IEEE Sensors Journal, 2018, Volume 18, Number 4, Page 1364
Sh. Sh. Nabiev and L. A. Palkina
Russian Journal of Physical Chemistry B, 2017, Volume 11, Number 5, Page 729
Stanisław Osowski and Krzysztof Siwek
Metrology and Measurement Systems, 2017, Volume 24, Number 1
Sanjay Gulia, Kamal K. Gulati, Vijayeta Gambhir, Rinku Sharma, and M.N. Reddy
Vibrational Spectroscopy, 2016, Volume 87, Page 207
Norbert Palka, Mateusz Szala, and Elzbieta Czerwinska
Applied Optics, 2016, Volume 55, Number 17, Page 4575
Puspendra Verma and R. H. Goudar
International Journal of System Assurance Engineering and Management, 2017, Volume 8, Number 1, Page 151
Jakub Svatos, Josef Vedral, and Tomas Pospisil
IEEE Transactions on Magnetics, 2016, Volume 52, Number 5, Page 1
Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, E. N. Golubeva, V. L. Zbarskii, N. V. Yudin, and V. M. Semenov
Russian Journal of Physical Chemistry B, 2016, Volume 10, Number 1, Page 159
Ummar Pasha Shaik, Syed Hamad, Md. Ahamad Mohiddon, Venugopal Rao Soma, and M. Ghanashyam Krishna
Journal of Applied Physics, 2016, Volume 119, Number 9, Page 093103
Pavel Bakharev and David McIlroy
Sensors, 2015, Volume 15, Number 6, Page 13110
Marcin Procek, Agnieszka Stolarczyk, Tadeusz Pustelny, and Erwin Maciak
Sensors, 2015, Volume 15, Number 4, Page 9563
Olive Emil Wetter and Mirjam Fuhrer
Journal of Transportation Security, 2013, Volume 6, Number 4, Page 377
J. Wojtas, T. Stacewicz, Z. Bielecki, B. Rutecka, R. Medrzycki, and J. Mikolajczyk
Opto-Electronics Review, 2013, Volume 21, Number 2
C. Babu Rao, Pandian Chelliah, and Trilochan Sahoo
Applied Optics, 2015, Volume 54, Number 18, Page 5639
Qian Zhang, Diming Zhang, Yanli Lu, Yao Yao, Shuang Li, and Qingjun Liu
Biosensors and Bioelectronics, 2015, Volume 68, Page 494
Lorena Cardona, Yuji Miyato, Hideo Itozaki, Jovani Jiménez, Nelson Vanegas, and Hideo Sato-Akaba
Applied Magnetic Resonance, 2015, Volume 46, Number 3, Page 295
Jacek Wojtas, Janusz Mikolajczyk, and Zbigniew Bielecki
Sensors, 2013, Volume 13, Number 6, Page 7570
Franziska Hofer and Olive E. Wetter
Journal of Transportation Security, 2012, Volume 5, Number 4, Page 277

Comments (0)

Please log in or register to comment.
Log in