Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …

Unconditional Security by the Laws of Classical Physics

Robert Mingesz / Laszlo Bela Kish
  • Texas A&M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128, USA, +36 979 847 9071
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zoltan Gingl
  • University of Szeged, Department of Technical Informatics, Árpád tér 2, Szeged, H-6701, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claes-Göran Granqvist / He Wen
  • Texas A&M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128, USA
  • Hunan University, College of Electrical and Information Engineering, Changsha 410082, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ferdinand Peper / Travis Eubanks / Gabor Schmera
Published Online: 2013-03-21 | DOI: https://doi.org/10.2478/mms-2013-0001

Abstract

There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnsonnoise and a Kirchhoff-loop ‒ i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol ‒ for secure key distribution leads to information theoretic security levels superior to those of today’s quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical).

Keywords: information theoretic security; unconditional security; secure key exchange; secure key distribution; quantum encryption

  • [1] Yuen, H.P. (2012). On the foundations of quantum key distribution - Reply to Renner and beyond. arXiv:1210.2804.Google Scholar

  • [2] Hirota, O. (2012). Incompleteness and limit of quantum key distribution theory. arXiv:1208.2106v2.Google Scholar

  • [3] Renner, R. (2012). Reply to recent scepticism about the foundations of quantum cryptography. arXiv:1209.2423v.1.Google Scholar

  • [4] Yuen, H.P. (2012). Security significance of the trace distance criterion in quantum key distribution. arXiv:1109.2675v3.Google Scholar

  • [5] Yuen, H.P. (2012). Unconditional security in quantum key distribution. arXiv:1205.5065v2.Google Scholar

  • [6] Yuen, H.P. (2009). Key generation: Foundation and a new quantum approach. IEEE J. Selected Topics in Quantum Electronics, 15, 1630.Google Scholar

  • [7] Merali, Z, (2009). Hackers blind quantum cryptographers. Nature News, DOI:10.1038/news.2010.436.CrossrefGoogle Scholar

  • [8] Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V. (2011). Full-field implementation of a perfect eavesdropper on a quantum cryptography system. _ature Commun., 2, 349 DOI: 10.1038/ncomms1348.CrossrefGoogle Scholar

  • [9] Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. _ature Photonics, 4, 686‒689, DOI: 10.1038/NPHOTON.2010.214.CrossrefGoogle Scholar

  • [10] Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Scarani, V., Makarov, V., Kurtsiefer, C. (2011). Experimentally faking the violation of Bell’s inequalities. Phys. Rev. Lett., 107,170404, DOI: 10.1103/PhysRevLett.107.170404.CrossrefGoogle Scholar

  • [11] Makarov, V., Skaar, J. (2008). Faked states attack using detector efficiency mismatch on SARG04, phasetime, DPSK, and Ekert protocols. Quantum Inf. Comp., 8, 622‒635.Google Scholar

  • [12] Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G. (2011). After-gate attack on a quantum cryptosystem. _ew J. Phys., 13, 013043, DOI: 10.1088/1367-2630/13/1/013043.CrossrefGoogle Scholar

  • [13] Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V. (2010). Thermal blinding of gated detectors in quantum cryptography. Opt. Express, 18, 27938‒27954, DOI: 10.1364/OE.18.027938.CrossrefGoogle Scholar

  • [14] Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G. (2011). Device calibration impacts security of quantum key distribution. Phys. Rev. Lett., 107, 110501, DOI: 10.1103/PhysRevLett.107.110501.CrossrefGoogle Scholar

  • [15] Lydersen, L., Skaar, J., Makarov, V. (2011). Tailored bright illumination attack on distributed-phasereference protocols. J. Mod. Opt., 58, 680-685. DOI: 10.1080/09500340.2011.565889.CrossrefGoogle Scholar

  • [16] Lydersen, L., Akhlaghi, M.K., Majedi, A.H., Skaar, J., Makarov, V. (2011). Controlling a superconducting nanowire single-photon detector using tailored bright illumination. _ew J. Phys., 13,113042, DOI: 10.1088/1367-2630/13/11/113042.CrossrefGoogle Scholar

  • [17] Lydersen, L., Makarov, V., Skaar, J. (2011). Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”. Appl. Phys. Lett., 99, 196101, DOI: 10.1063/1.3658806.CrossrefGoogle Scholar

  • [18] Sauge, S., Lydersen, L., Anisimov, A., Skaar, J., Makarov, V. (2011). Controlling an actively-quenched single photon detector with bright light. Opt. Express, 19, 23590‒23600.CrossrefGoogle Scholar

  • [19] Lydersen, L., Jain, N., Wittmann, C., Maroy, O., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G. (2011). Superlinear threshold detectors in quantum cryptography. Phys. Rev. Lett., 84, 032320, DOI: 10.1103/Phys RevA.84.032320.CrossrefGoogle Scholar

  • [20] Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V. (2010). Avoiding the blinding attack in QKD; Reply (Comment). _ature Photonics, 4, 801‒801, DOI: 10.1038/nphoton.2010.278.CrossrefGoogle Scholar

  • [21] Makarov, V. (2009). Controlling passively quenched single photon detectors by bright light. New J. Phys., 11, 065003, DOI: 10.1088/1367-2630/11/6/065003.CrossrefGoogle Scholar

  • [22] Kish, L.B., Mingesz, R., Gingl, Z. (2007). Unconditionally secure communication via wire. SPIE _ewsroom, DOI: 10.1117/2.1200709.0863.CrossrefGoogle Scholar

  • [23] Johnson, J.B. (1927). Thermal agitation of electricity in conductors. Nature, 119, 50‒51.Google Scholar

  • [24] Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev., 32, 110‒113.CrossrefGoogle Scholar

  • [25] Born, M., Heisenberg, W., Jordan, P. (1926). Quantum mechanics II. Z. Phys., 35, 557‒615.CrossrefGoogle Scholar

  • [26] Allahverdyan, A.E., Nieuwenhuizen, T.M . (2000). Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett., 85, 1799‒1802.CrossrefGoogle Scholar

  • [27] Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H. (2003). Extracting work from a single heat bath via vanishing quantum coherence. Science, 299, 862‒864.Google Scholar

  • [28] Kish, L.B. (2011). Thermal noise engines. Chaos Solitons Fractals, 44, 114-121, http://arxiv.org/abs/1009.5942CrossrefGoogle Scholar

  • [29] Kish, L.B. (2009). Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states. Phys. Lett., A, 373, 911‒918.Google Scholar

  • [30] Kish, L.B., Khatri, S., Sethuraman, S. (2009). Noise-based logic hyperspace with the superposition of 2^N states in a single wire. Phys. Lett., A, 373, 1928‒1934.Google Scholar

  • [31] Bezrukov, S.M., Kish, L.B. (2009). Deterministic multivalued logic scheme for information processing and routing in the brain. Phys. Lett., A, 373, 2338‒2342.Google Scholar

  • [32] Gingl, Z., Khatri, S., Kish, L.B. (2010). Towards brain-inspired computing. Fluct. oise Lett., 9, 403-412.Google Scholar

  • [33] Kish, L.B., Khatri, S., Horvath, T. (2011). Computation using noise-based logic: Efficient string verification over a slow communication channel. Eur. J. Phys., B, 79, 85‒90, http://arxiv.org/abs/1005.1560Google Scholar

  • [34] Peper, F., Kish, L.B. (2011). Instantaneous, non-squeezed, noise-based logic. Fluct. oise Lett., 10, 231-237, http://www.worldscinet.com/fnl/10/1002/open-access/S0219477511000521Google Scholar

  • [35] Wen, H., Kish, L.B., Klappenecker, A., Peper, F. (June 2012). New noise-based logic representations to avoid some problems with time complexity. Fluct. oise Lett., 11, 1250003.Google Scholar

  • [36] Mullins. J. (2010). Breaking the noise barrier. New Scientist, 2780, http://www.newscientist.com/article/mg20827801.500-breaking-the-noise-barrier.html?full=trueGoogle Scholar

  • [37] Kish, L.B. (2006). Totally secure classical communication utilizing Johnson(-like) noise and Kirchhoff’s law. Phys. Lett., A, 352, 178‒182.Google Scholar

  • [38] Cho, A. (2005). Simple noise may stymie spies without quantum weirdness. Science, 309, 2148, http://www.ece.tamu.edu/~noise/news_files/science_secure.pdfGoogle Scholar

  • [39] Kish, L.B. (2006). Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)- noise cipher and expansion by voltage-based security. Fluct. oise Lett., 6, L57-L63, http://arxiv.org/abs/physics/0512177Google Scholar

  • [40] Mingesz, R., Gingl, Z., Kish, L.B. (2008). Johnson(-like)-noise-Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Phys. Lett., A, 372, 978-984.Google Scholar

  • [41] Palmer, D.J. (2007). Noise encryption keeps spooks out of the loop. New Scientist, 2605, 32, http://www.newscientist.com/article/mg19426055.300-noise-keeps-spooks-out-of-the-loop.htmlGoogle Scholar

  • [42] Kish, L.B., Horvath, T. (2009). Notes on recent approaches concerning the Kirchhoff-law-Johnson-noisebased secure key exchange. Phys. Lett., A, 373, 901‒904.Google Scholar

  • [43] Scheuer, J., Yariv, A. (2006). A classical key-distribution system based on Johnson (like) noise - How secure? Phys. Lett., A, 359, 737‒740.Google Scholar

  • [44] Kish, L.B., Scheuer, J. (2010). Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator. Phys. Lett., A, 374, 2140-2142.Google Scholar

  • [45] Kish, L.B. (2006). Response to Scheuer-Yariv: “A classical key-distribution system based on Johnson (like) noise - How secure?”. Phys. Lett., A, 359, 741‒744.Google Scholar

  • [46] Hao, F. (2006). Kish’s key exchange scheme is insecure. IEE Proc. Inform. Soc., 153, 141-142.Google Scholar

  • [47] Kish, L.B. (2006). Response to Feng Hao’s paper “Kish’s key exchange scheme is insecure”. Fluct. oise Lett., 6, C37-C41.Google Scholar

  • [48] Liu, P.L. (2009). A new look at the classical key exchange system based on amplified Johnson noise. Phys. Lett., A, 373, 901‒904.Google Scholar

  • [49] Horvath, T., Kish, L.B., Scheuer, J. (2011). Effective privacy amplification for secure classical communications. Europhys. Lett., 94, 28002, http://arxiv.org/abs/1101.4264Google Scholar

  • [50] Kish, L.B., Saidi, O. (2008). Unconditionally secure computers, algorithms and hardware. Fluct. oise Lett., 8, L95-L98.Google Scholar

  • [51] Kish, L.B., Mingesz, R. (2006). Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with Johnson-like noise. Fluct. oise Lett., 6, C9‒C21.Google Scholar

  • [52] Kish, L.B,, Peper, F. (2012). Information networks secured by the laws of physics. IEICE Trans. Commun., E95-B, 1501-1507.CrossrefGoogle Scholar

  • [53] http://en.wikipedia.org/wiki/Quantum_computerGoogle Scholar

  • [54] Wiesner, S. (1983). Conjugate coding. SIGACT News, 15, 78-88.Google Scholar

  • [55] Bennett, C.H., Brassard, G. (1983). Quantum cryptography and its application to provably secure key expansion, public-key distribution, and coin-tossing. In Proc. IEEE Int. Symp. Inform. Theor., St-Jovite, Canada, 91.Google Scholar

  • [56] Brassard, G., (2005). Brief history of quantum cryptography: A personal perspective. In Proc. IEEE Information Theory Workshop on Theory and Practice in Information Theoretic Security, Awaji Island, Japan, 19‒23.Google Scholar

  • [57] Xu, F., Qi, B., Lo, H.K. (2010). Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys., 12, 113026, http://arxiv.org/abs/1005.2376Google Scholar

  • [58] Liang, Y., Poor, H.V., Shamai, S. (2008). Information theoretic security. Foundations Trends Commun. Inform. Theory, 5, 355-580, DOI: 10.1561/0100000036.CrossrefGoogle Scholar

  • [59] Vincent Poor, private communication.Google Scholar

About the article

Published Online: 2013-03-21

Published in Print: 2013-03-01


Citation Information: Metrology and Measurement Systems, Volume 20, Issue 1, Pages 3–16, ISSN (Print) 0860-8229, DOI: https://doi.org/10.2478/mms-2013-0001.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yessica Saez, Laszlo B. Kish, and Enrico Scalas
PLoS ONE, 2013, Volume 8, Number 11, Page e81103
[2]
Elias Gonzalez and Laszlo B. Kish
Fluctuation and Noise Letters, 2016, Volume 15, Number 01, Page 1650008
[3]
Elias Gonzalez, Robert Balog, and Laszlo Kish
Entropy, 2015, Volume 17, Number 4, Page 2010
[4]
Hsien-Pu Chen, Elias Gonzalez, Yessica Saez, and Laszlo Kish
Information, 2015, Volume 6, Number 4, Page 719
[5]
Claudio De Capua, Laura Fabbiano, Rosario Morello, and Gaetano Vacca
Instrumentation Science & Technology, 2014, Volume 42, Number 4, Page 458
[6]
Yessica Saez, Laszlo B. Kish, Robert Mingesz, Zoltan Gingl, and Claes G. Granqvist
Journal of Computational Electronics, 2014, Volume 13, Number 1, Page 271
[7]
Hsien-Pu Chen, Laszlo B. Kish, Claes-Göran Granqvist, and Gabor Schmera
Fluctuation and Noise Letters, 2014, Volume 13, Number 02, Page 1450016
[8]
X. Cao, Y. Saez, G. Pesti, and L. B. Kish
Fluctuation and Noise Letters, 2015, Volume 14, Number 01, Page 1550008
[9]
Laszlo B. Kish, Derek Abbott, Claes-Göran Granqvist, and He Wen
International Journal of Modern Physics: Conference Series, 2014, Volume 33, Page 1460362
[10]
Yessica Saez, Laszlo B. Kish, Robert Mingesz, Zoltan Gingl, and Claes G. Granqvist
International Journal of Modern Physics: Conference Series, 2014, Volume 33, Page 1460367
[11]
Y. Saez, X. Cao, L. B. Kish, and G. Pesti
Fluctuation and Noise Letters, 2014, Volume 13, Number 03, Page 1450020
[12]
Robert Mingesz, Gergely Vadai, and Zoltan Gingl
Fluctuation and Noise Letters, 2014, Volume 13, Number 03, Page 1450021
[13]
LASZLO B. KISH and CHIMAN KWAN
Fluctuation and Noise Letters, 2013, Volume 12, Number 03, Page 1350018

Comments (0)

Please log in or register to comment.
Log in