Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2015: 0.554
Source Normalized Impact per Paper (SNIP) 2015: 1.363

Open Access
Online
ISSN
2300-1941
See all formats and pricing
In This Section
Volume 20, Issue 2 (Jun 2013)

Modeling of HgCdTe LWIR detector for high operation temperature conditions

P. Martyniuk
  • Corresponding author
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • Email:
/ W. Gawron
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
/ P. Madejczyk
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
/ A. Rogalski
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
/ J. Piotrowski
  • Corresponding author
  • Vigo System S.A., 129/133 Pozna!ska Str., 05-850 O"arów Mazowiecki, Poland
  • Email:
Published Online: 2013-06-05 | DOI: https://doi.org/10.2478/mms-2013-0014

Abstract

The paper reports on the photoelectrical performance of the long wavelength infrared (LWIR) HgCdTe high operating temperature (HOT) detector. The detector structure was simulated with commercially available software APSYS by Crosslight Inc. taking into account SRH, Auger and tunnelling currents. A detailed analysis of the detector performance such as dark current, detectivity, time response as a function of device architecture and applied bias is performed, pointing out optimal working conditions.

Keywords: HgCdTe; IR detector; Auger suppression; HOT detectors

  • [1] Rogalski A. (2011). Infrared Detectors, second edition. CRC Press, Boca Raton. Google Scholar

  • [2] Martyniuk P., Rogalski A. (2013). HOT infrared detectors. Opto-Electron. Rev., 21(2), 239.257. CrossrefGoogle Scholar

  • [3] Rogalski A. (2005). HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys., 68, 2267. 2336. CrossrefGoogle Scholar

  • [4] Norton P. (2002). HgCdTe infrared detectors. Opto-Electron. Rev., 10, 159.174. Google Scholar

  • [5] Piotrowski J., Rogalski A. (2007). High-Operating-Temperature Infrared Photodetectors. Ed. SPIE, Bellingham, ISBN: 9780819465351. Google Scholar

  • [6] Piotrowski J. and Piotrowski A. (2011). Room temperature photodetectors. Mercury Cadmium Telluride: Growth, Properties and Applications edited by Peter Capper and James Garland, Willey, 513.537. Google Scholar

  • [7] Piotrowski J. (1972). A new method of obtaining CdHgTe thin films. Electr. Technol., 5, 87.89. Google Scholar

  • [8] Jezykowski R., Persak T., Piotrowski J. (1972). Uncooled photodetectors based on 8-12 µm HgCdTe layers. (in Polish), Biul. WAT, 5, 105.109. Google Scholar

  • [9] Grudzien M. and Piotrowski J. (1989). Monolithic optically immersed HgCdTe IR detectors. Infrared Phys., 29, 251.253. CrossrefGoogle Scholar

  • [10] Ashley T. and Elliott C. T. (1985). Non-equilibrium mode of operation for infrared detection. Electron. Lett., 21, 451.452. CrossrefGoogle Scholar

  • [11] Ashley T. and Elliott C. T. (1991). Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques. Semicond. Sci. Technol., 6, C99.C105. CrossrefGoogle Scholar

  • [12] Ashby M. K., Gordon N. T., Elliott C.T., Jones C.L., Maxey C. D., Hipwood L. and Catchpole R. (2003). Novel Hg1-xCdxTe device structure for higher operating temperature detectors. J. Electron. Mat. 32, 667.671. CrossrefGoogle Scholar

  • [13] Maxey C.D., Jones C.L., Metcalfe N.E., Catchpole R.A., Gordon N.T., White A.M. and Elliot C.T. (2007). MOVPE growth of improved non-equlibrium MCT device structures for near ambient temperature heterodyne detectors. Proc. SPIE, 3122, 453.464. Google Scholar

  • [14] Adamiec K., Gawron W., Piotrowski J. (1997). Isothermal vapor phase epitaxy and RF sputtering for band gap engineered HgCdTe. Proc. SPIE, 3179, 251.255. Google Scholar

  • [15] Piotrowski J., Grudzie* M., Nowak Z., Orman Z., Pawluczyk J., Romanis M. and Gawron W. (2000). Uncooled photovoltaic Hg1-xCdxTe LWIR detectors. Proc. SPIE, 4130, 175.184. Google Scholar

  • [16] Wenus J., Rutkowski J., Rogalski A. (2001). Two-Dimensional Analysis of Double-Layer Heterojunction HgCdTe Photodiodes. IEEE Transactions on Electron Devices, 48, 1326.1332. Google Scholar

  • [17] Rutkowski J., Wenus J. (2001). Inherent and additional limitations of HgCdTe heterojunction photodiodes. Opto-Electron. Rev., 9, 331.335. Google Scholar

  • [18] Wenus J., Rutkowski J., (2002). Influence of valence-band barriers in VLWIR HgCdTe P-on-n heterojunctions on photodiode parameters. Phys. Stat. Sol. (b), 229, 1093.1096. Google Scholar

  • [19] Kubiak L., Madejczyk P., Wenus J., Gawron W., Jó+wikowski K., Rutkowski J., Rogalski A. (2003). Status of HgCdTe photodiodes at the Military University of Technology. Opto-Electron. Rev., 11, 211.226. Google Scholar

  • [20] Piotrowski J., Gawron W., Orman Z., Pawluczyk J., K-os K., St<pie* D. and Piotrowski A. (2010). Dark currents, responsivity, and response time in graded gap HgCdTe structures. Proc. SPIE, 7660, 766031-766031-8. Google Scholar

  • [21] Klipstein P. (2008). XBn. barrier photodetectors for high sensitivity and high operating temperature infrared sensors. Proc. SPIE, 6940, 69402U-1.11. Google Scholar

  • [22] Ting D. Z., Hill C. J., Soibel A., Nguyen J., Keo S., Lee M. C., Mumolo J. M., Liu J. K., and Gunapala S. D. (2010). Antimonide-based barrier infrared detectors. Proc. SPIE, 7660, 76601R. Google Scholar

  • [23] Ting D. Z., Soibel A., Höglund L., Nguyen J., Hill C.J., Khoshakhlagh A., and Gunapala S. D. (2011). Type-II superlattice infrared detectors. In Semiconductors and Semimetals, edited by S. D. Gunapala, D. R. Rhiger, and C. Jagadish, Elsevier, Amsterdam. Google Scholar

  • [24] Rogalski A., Martyniuk P. (2006). InAs/GaInSb superlattices as a promising material system for third generation infrared detectors. Infrared Physics & Technol., 48, 39.52.CrossrefGoogle Scholar

  • [25] Martyniuk P., Rogalski A. (2008). Comparison of performance of quantum dot and other types infrared photodetectors. Proc. SPIE, 6940, 694004. Google Scholar

  • [26] Martyniuk P., Wrobel J., Plis E., Madejczyk P., Kowalewski A., Gawron W., Krishna S., Rogalski A. (2012). Performance modeling of MWIR InAs/GaSb/B-Al0.2Ga0.8Sb type-II superlattice nBn detector. Semicond. Sci. Technol., 27, 055002. Web of ScienceGoogle Scholar

  • [27] Wróbel J., Martyniuk P., Plis E., Madejczyk P., Gawron W., Krishna S., Rogalski A. (2012) Dark current modeling of MWIR type-II superlattice detectors. Proc. SPIE, 8353, 8353-16. Google Scholar

  • [28] Martyniuk P., Wróbel J., Plis E., Madejczyk P., Gawron W., Kowalewski A., Krishna S., Rogalski A. (2013). Modeling of mid wavelength infrared InAs/GaSb type II superlattice detectors. Optical Engineering52, 061307-1.12. Web of ScienceGoogle Scholar

  • [29] Gawron W., Piotrowski J. (1994). Practical near room-temperature, long-wavelength IR photovoltaic detectors. Opto-Electron. Rev., 2, 91.94. Google Scholar

  • [30] Piotrowski J., Gawron W. (1995). Extension of longwavelength IR photovoltaic detector operation to near room- temperatures. Infrared Physics & Technol., 36, 1045-1051. CrossrefGoogle Scholar

  • [31] Piotrowski J., Gawron W. (1997). Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Physics & Technol., 38, 63-68. CrossrefGoogle Scholar

  • [32] www.vigo.com.pl Google Scholar

  • [33] Piotrowski A., Piotrowski J., Gawron W., Pawluczyk J., Pedzinska M. (2009). Extension of usable spectral range of Peltier cooled photodetectors. Acta Physica Polonica A, 116, 52.55. Google Scholar

  • [34] Piotrowski A., Piotrowski J., Gawron W., Pawluczyk J., Pedzinska M. (2009). Extension of spectral range of Peltier cooled photodetectors to 16 µm. Proc. SPIE, 7298, 729824. Google Scholar

  • [35] Stanaszek D., Piotrowski J., Piotrowski A., Gawron W., Orman Z., Paliwoda R., Brudnowski M., Pawluczyk J. , Pedzi*ska M. (2009). Mid and long infrared detection modules for picosecond range measurements. Proc. SPIE, 7482, 74820M-74820M-11. Google Scholar

  • [36] Piotrowski J., Pawluczyk J., Piotrowski A., Gawron W., Romanis M., K-os K. (2010). Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev., 18, 318.327. CrossrefWeb of ScienceGoogle Scholar

  • [37] APSYS Macro/User.s Manual ver. 2011. (2011). Crosslight Software, Inc. Google Scholar

  • [38] Martyniuk P., Rogalski A. (2013). Modeling of MWIR HgCdTe complementary barrier HOT detector. Solid-State Electronics, 80, 96.104. Google Scholar

  • [39] Martyniuk P., Rogalski A. (2013). Theoretical modeling of MWIR thermoelectrically cooled nBn HgCdTe detector. Bull. Pol. Ac.: Tech., 61, 1. Google Scholar

  • [40] Capper P. P. (1994). Properties of Narrow Gap Cadmium-based Compounds, London, U.K.: Inst. Elect. Eng. Google Scholar

  • [41] Piotrowski A., Madejczyk P., Gawron W., K-os K. Pawluczyk J., Rutkowski J., Piotrowski J., Rogalski A. (2007). Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors. Infrared Physics & Technol. 49, 173.182. CrossrefWeb of ScienceGoogle Scholar

  • [42] Madejczyk P., Piotrowski A, K-os A., Gawron W., Rutkowski J., Rogalski A. (2010). Control of acceptor doping in MOCVD HgCdTe epilayers. Opto-Electron. Rev., 18, 271.276. Web of ScienceCrossrefGoogle Scholar

  • [43] Tennant W. E., Lee D., Zandian M., PiQuette E., Carmody M. (2008). MBE HgCdTe Technology: A very general solution to IR detection, described by .Rule07., a very convenient heuristic. J. Electron. Mater., 37, 1406.1410.Web of ScienceGoogle Scholar

About the article

Published Online: 2013-06-05

Published in Print: 2013-06-01


Citation Information: Metrology and Measurement Systems, ISSN (Print) 0860-8229, DOI: https://doi.org/10.2478/mms-2013-0014.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M Kopytko, A Kębłowski, W Gawron, and W Pusz
Semiconductor Science and Technology, 2016, Volume 31, Number 3, Page 035025
[2]
J. Pawluczyk, J. Piotrowski, W. Pusz, A. Koźniewski, Z. Orman, W. Gawron, and A. Piotrowski
Journal of Electronic Materials, 2015
[3]
Vanya Srivastav, R.K. Sharma, R.K. Bhan, V. Dhar, and V. Venkataraman
Infrared Physics & Technology, 2013, Volume 61, Page 290

Comments (0)

Please log in or register to comment.
Log in