Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …
Volume 20, Issue 3


An Efficient Method of Group Delay Equalization for Digital IIR Filters

Piotr Okoniewski
  • Corresponding author
  • West Pomeranian University of Technology, Faculty of Electrical Engineering, ul. Sikorskiego 37, 70-313 Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacek Piskorowski
  • West Pomeranian University of Technology, Faculty of Electrical Engineering, ul. Sikorskiego 37, 70-313 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-06 | DOI: https://doi.org/10.2478/mms-2013-0034


The paper presents the equalization problem of non-linear phase response of digital IIR type filters. An improved analytical method of designing a low-order equalizer is presented. The proposed approach is compared with the original method. The genetic algorithm is presented as an iterative method of optimization. The vector and matrix representation of the all-pass equalizer are shown and introduced to the algorithm. The results are compared with the analytical method. In this paper we have also proposed the use of an aging factor and setting the initial population of the genetic algorithm around the solution provided by the analytical methodology

Keywords: IIR filter; digital filter; group delay; phase response; genetic algorithm; equalizer

  • [1] Ziska P., Vrbata J. (2006). Method for design of analog group delay equalizers. Proc. IEEE ISCAS, 445-448.Google Scholar

  • [2] Farhang-Boroujeny B., Nooshfar S. (1991). Adaptive phase equalization using all-pass filters. Proc. IEEEICC, 1403-1407.Google Scholar

  • [3] Umino K., Andersen J., Hove R.G. (1990). A novel IIR filter delay equalizer design approach using a personal computer. Proc. IEEE ISCAS, 1,137-140.Google Scholar

  • [4] Quelhas M.F., Petraglia A. (2003). Group delay equalization of discrete time filters. Proc. IEEE ISIE, 2, 924- 927.Google Scholar

  • [5] Zhang L., Kwasniewski T. (2010). Optimal equalization for reducing the impact of channel group delay distortion on high-speed backplane data transmission. Int. J. of Electron. and Commun., 64(7), 671-681.Web of ScienceGoogle Scholar

  • [6] Piskorowski J., Kaszynski R., Gutierrez de Anda M. A., Sarmiento-Reyes A. (2008) Group delay compensation and settling time minimization in continuous-time elliptic filters. Proc. IEEE MELECON, 12-16.Google Scholar

  • [7] Gupta A., Parsa A., et al., (2010). Group-delay engineered noncommensurate transmission line all-pass network for analog signal processing. IEEE Trans. Microw. Theory Tech., 58(9), 2392-2407.CrossrefWeb of ScienceGoogle Scholar

  • [8] Piskorowski J., Gutierrez de Anda M. A. (2009). A New Class of Continuous-Time Delay-Compensated Parameter-Varying Low-Pass Elliptic Filters With Improved Dynamic Behavior. IEEE Trans. CircuitsSyst. I, Reg. Papers. 56(1), 179-189.Web of ScienceGoogle Scholar

  • [9] Piskorowski J. (2006). Phase-Compensated Time-Varying Butterworth Filters. Analog Integr. CircuitsSignal Process., 47(2), 233-241.Google Scholar

  • [10] Quelhas M.F., Petraglia A. (2005). Initial solution for the optimum design delay equalizers. Proc. IEEEISCAS, 4, 3587-3590.Google Scholar

  • [11] Golonek T., Jantos P., Rutkowski J., (2012). Stimulus with limited band optimization for analogue circuit testing. Metrol. Meas. Syst., 19(1), 73-84.Web of ScienceGoogle Scholar

  • [12] Goldberg D.E., (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Boston: Addison Wesley.Google Scholar

  • [13] Holland J. (1992). Genetic algorithms. Scientific American. 66-72.Google Scholar

  • [14] C. Coello (June 2005). An updated survey of GA-based multiobjective optimization techniques. ACMComputing Surveys, 32(2), 109-143.Google Scholar

  • [15] Bird J., Layzell P. (2002). The evolved radio and its implications for modeling the evolution of novel sensors. Proceedings of the 2002 Congress on Evolutionary Computation. 1836-1841.Google Scholar

  • [16] Srinivas, M., Patnaik, L.M. (1994). Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst., Man, Cybern., Syst., 24(4), 656-667.Web of ScienceGoogle Scholar

  • [17] Haupt, R.L. (2000). Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. IEEE APS., 2(2), 1034-1037.Google Scholar

About the article

Published Online: 2013-09-06

Published in Print: 2013-09-01

Citation Information: Metrology and Measurement Systems, Volume 20, Issue 3, Pages 395–406, ISSN (Print) 0860-8229, DOI: https://doi.org/10.2478/mms-2013-0034.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.


Comments (0)

Please log in or register to comment.
Log in