Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 21, Issue 3 (Aug 2014)

Issues

The Impedance Measurements Problem in Antennas for RFID Technique

Piotr Jankowski-Mihułowicz
  • Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Department of Electronic and Communications Systems, Pola 2, 35-959 Rzeszów, Poland (http://pjanko.sd.prz.edu.pl +48 17 854 4708)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz Pitera
  • Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Department of Electronic and Communications Systems, Pola 2, 35-959 Rzeszów, Poland (http://pjanko.sd.prz.edu.pl +48 17 854 4708)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariusz Węglarski
  • Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Department of Electronic and Communications Systems, Pola 2, 35-959 Rzeszów, Poland (http://pjanko.sd.prz.edu.pl +48 17 854 4708)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-21 | DOI: https://doi.org/10.2478/mms-2014-0043

Abstract

The authors paid particular attention to the problem of antenna impedance measurements in the RFID technique. These measurements have to be realized by using two ports of a vector network analyzer and dedicated passive differential probes. Since the measurement process and estimated parameters depend on the frequency band, operating conditions, type of the system component and antenna designs used, appropriate verification of the impedance parameters on the basis of properly conducted experiments is a crucial stage in the antenna synthesis of transponders and read/write devices. Accordingly, a systematized procedure of impedance measurements is proposed. It can be easily implemented by designers preparing antennas for different kinds of RFID applications. The essence of indirect measurements of the differential impedance parameters is discussed in details. The experimental verification has been made on the basis of a few representative examples.

Keywords: RFID; antenna; impedance measurement; differential probe

References

  • [1] Finkenzeller, K. (2010). RFID Handbook. 3-rd ed., Wiley.Google Scholar

  • [2] Yao, W., Chu, C.H., Li, Z. (2012). The Adoption and Implementation of RFID Technologies in Healthcare: A Literature Review. J. Med. Syst., 36, 3507–3525.CrossrefWeb of ScienceGoogle Scholar

  • [3] Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarrià, D., Menesatti, P. (2013). A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. FoodBioprocess Technol., 6, 353–366.CrossrefGoogle Scholar

  • [4] Ha, O., Park, M., Lee, K., Park, D. (2013). RFID Application in the Food-Beverage Industry: Identifying Decision Making Factors and Evaluating SCM Efficiency. KSCE Journal of Civil Engineering, 7, 1773–1781.CrossrefGoogle Scholar

  • [5] Ustundag, A. (2013). The Value of RFID, Benefits vs. Costs. Springer-Verlag.Google Scholar

  • [6] Jankowski-Mihułowicz, P., Węglarski, M. (2012). Determination of 3-Dimentional Interrogation Zone in Anticollision RFID Systems with Inductive Coupling by Using Monte Carlo Method. Acta Phys. Pol. A, 121(4), 936–940.Google Scholar

  • [7] Sharma, A., Zuazola, I.J.G., Gupta, A., Perallos, A., Batchelor, J.C. (2013). Non-Uniformly Distributed-Turns Coil Antenna for Enhanced H-Field in HF-RFID. IEEE Trans. Antennas Propag., 61(10), 4900–4907.Web of ScienceCrossrefGoogle Scholar

  • [8] Petrariu, A.-I., Popa, V., Gaitan, V.-G., Finis, I. (2012). Test results for HF RFID antenna system tuning in metal environment. In Proc. of 13th ICCC 2012. High Tatras, Slovakia, 543–546.Google Scholar

  • [9] Jankowski-Mihułowicz, P., Węglarski, M. (2012). Synthesis of Read/Write Device Antenna for HF Proximity Range RFID Systems with Inductive Coupling. PE, 88(3a), 70–73.Google Scholar

  • [10] Ahmad, M.Y., Mohan, A.S. (2011). Multi-loop bridge HF RFID reader antenna for improved positioning. In Proc. of APMC 2011. Melbourne, Australia, 1426–1429.Google Scholar

  • [11] Qing, X., Chen, Z.N. (2009). Characteristics of a metal-backed loop antenna and its application to a high-frequency RFID smart shelf. IEEE Antennas Propag. Mag., 51(2), 26–38.CrossrefGoogle Scholar

  • [12] Wobak, M., Gebhart, M., Muehlmann, U. (2012). Physical Limits of Batteryless HF RFID Transponders defined by System Properties. In Proc. IEEE RFID-TA 2012. Grenoble, France, 142–147.Google Scholar

  • [13] Ohnimus, F., Ndip, I., Guttowski, S., Reichi, H. (2008). Design and analysis of a bent antenna-coil for a HF-RFID transponder. In Proc. 38th Eur. Microw. Conf. 2008. Amsterdam, Netherlands, 75–78.Google Scholar

  • [14] Hennig, A. (2008). Feasibility of Deeply Implanted Passive Sensor Transponders in Human Bodies. In Proc. of 4th European Workshop on RFID SysTech 2008. Freiburg, Germany, 1–7.Google Scholar

  • [15] De Vita, G., Iannaccone, G. (2005). Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Trans. Microw. Theory Tech., 53(9), 2978–2990.Google Scholar

  • [16] Wei, P., Che, W., Bi, Z., Wei, C., Na, Y., Qiang, L., Hao, M. (2011). High-Efficiency Differential RF Front-End for a Gen2 RFID Tag. IEEE Trans. Circuits Syst., 58(4), 189–194.CrossrefGoogle Scholar

  • [17] Dobkin, D. (2012). The RF in RFID, UHF RFID in Practice, SE. Newnes, 2012.Google Scholar

  • [18] Meyers, R., Janssens, F. (1998). Measuring the impedance of balanced antennas by an S-Parameter method. IEEE Antennas and Propag. Mag., 40(6), 62–65.Google Scholar

  • [19] Bockelman, E., Eisenstadt, W.R. (1995). Combined Differential and Common-Mode Scattering Parameters: Theory and Simulation. IEEE Trans. Microw. Theory Techn., 43(7), 1530–1539.Google Scholar

  • [20] Janeczek, K., Jankowski-Mihułowicz, P., Jakubowska, M., Kozioł, G., Młożniak, A., Futera, K., Stęplewski, W. (2012). Performance Characterization of UHF RFID Antennas Manufactured with Screen Printing Technique on Flexible Substrates. Microelectronic Materials and Technologies, 232(2), 61–74.Google Scholar

  • [21] Koskinen, T., Rajagopalan, H., Rahmat-Samii, Y. (2009). Impedance measurements of various types of balanced antennas with the differential probe method. In Proc. of IEEE iWAT 2009. Santa Monica, CA, USA, 1–4.Google Scholar

  • [22] Pantoja, A.J.J, Pena, N.M., Roman, F., Vega, F., Rachidi, F. (2012). Wideband experimental characterization of differential antenna. In Proc. of 6th EUCAP 2012. Prague, Czech Republic, 2135–2139.Google Scholar

  • [23] N1021B 18 GHz Differential TDR Probe Kit. Agilent, 5990-4013EN. http://www.home.agilent.com. (5 Nov. 2013).Google Scholar

  • [24] Differential Impedance TDR Probes for the DSA8300, P80318. Tektronix, 85W-18863-2. http://www.tek.com. (28 Apr. 2011).Google Scholar

  • [25] TDR BladeProbe, Innovative TDR Handheld Probe Solutions. PacketMicro, Datasheet. http://www.packetmicro.com. (2013).Google Scholar

  • [26] Rumiantsev, A., Ridler, N. (2008). VNA calibration, IEEE Microw. Mag., 9(3), 86–99.CrossrefWeb of ScienceGoogle Scholar

  • [27] Qing, X., Chean, K.G., Chen, Z.N. (2009). Impedance characterization of RFID tag antennas and application in tag co-design. IEEE Trans. Microw. Theory Techn., 57(5), 1268–1274.Google Scholar

  • [28] Zhu, H.L., Ko, Y.C.A., Ye, T.T. (2010). Impedance measurement for balanced UHF RFID tag antennas. In Proc. of IEEERWS2010. New Orleans, LA, USA, 128–131.Google Scholar

  • [29] da Costa, F.C., de Lima, E.R., Yoshioka, R.T., Bertuzzo, J.E., Koeppe, J. (2013). Impedance measurement of dipole antenna for EPC Global compliant RFID tag. In Proc. of SBMO/IEEE MTT-S IMOC2013. Rio de Janeiro, RJ, Brazil, 1–5.Google Scholar

  • [30] SL900A Single-Chip EPC Data Logger with Sensor. IDS Microchip AG, Product Flyer. http://www.ams.com. (March 2010).Google Scholar

About the article

Received: 2014-01-02

Accepted: 2014-05-05

Published Online: 2014-08-21


This work was supported in part by the Polish National Centre for Research and Development (NCBR) under Grant No. PBS1/A3/3/2012. The work was developed by using the equipment purchased in the Operational Program Development of Eastern Poland 2007-2013 of the Priority Axis I Modern Economics of Activity I.3 Supporting Innovation under Grant No. POPW.01.03.00-18-012/09-00 and the Program of Development of Podkarpacie Province of The European Regional Development Fund under Grant No. UDA-RPPK.01.03.00-18-003/10-00.


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.2478/mms-2014-0043.

Export Citation

© 2014 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kamil Janeczek
Microelectronics Reliability, 2017, Volume 75, Page 96

Comments (0)

Please log in or register to comment.
Log in