Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2015: 0.554
Source Normalized Impact per Paper (SNIP) 2015: 1.363

Open Access
Online
ISSN
2300-1941
See all formats and pricing
In This Section
Volume 21, Issue 4 (Dec 2014)

Infrared Devices And Techniques (Revision)

A. Rogalski
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
/ K. Chrzanowski
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Published Online: 2014-12-04 | DOI: https://doi.org/10.2478/mms-2014-0057

Abstract

The main objective of this paper is to produce an applications-oriented review covering infrared techniques and devices. At the beginning infrared systems fundamentals are presented with emphasis on thermal emission, scene radiation and contrast, cooling techniques, and optics. Special attention is focused on night vision and thermal imaging concepts. Next section concentrates shortly on selected infrared systems and is arranged in order to increase complexity; from image intensifier systems, thermal imaging systems, to space-based systems. In this section are also described active and passive smart weapon seekers. Finally, other important infrared techniques and devices are shortly described, among them being: non-contact thermometers, radiometers, LIDAR, and infrared gas sensors.

Keywords: frequency analysis; time-frequency analysis; Short-Time Fourier Transform; Gabor Transform; Wigner-Ville Transform; Cone-Shaped Transform; wavelet analysis; time-scale analysis; wavelet decomposition; filter banks; wavelet packets

References

  • [1] Herschel, W. (1800). Experiments on the refrangibility of the invisible rays of the Sun, Phil. Trans. Roy. Soc. London 90, 284.Google Scholar

  • [2] Ross, W. (1994). Introduction to Radiometry and Photometry. Boston: Artech.Google Scholar

  • [3] Hudson, R. D. (1969). Infrared System Engineering. New York: Wiley.Google Scholar

  • [4] Rogalski, A. (2010). Infrared Detectors. Boca Raton: CRC Press.Google Scholar

  • [5] http://www.electronics-ca.com/infrared-detectors-market-report.htmlGoogle Scholar

  • [6] Couture, M. E. (2001). Challenges in IR optics, Proc. SPIE 4369, 649-661.Google Scholar

  • [7] Harris, D. C. (1999). Materials for Infrared Windows and Domes. Bellingham: SPIE Optical Engineering Press.Google Scholar

  • [8] Smith, W. J. (2000). Modern Optical Engineering. New York: McGraw-Hill.Google Scholar

  • [9] Lloyd, J. M. (1975). Thermal Imaging Systems. New York: Plenum.Google Scholar

  • [10] Kozlowski, L. J., Kosonocky, W. F. (1995). Infrared detector arrays Handbook of Optics, Chapter 23, ed M. Bass, E. W., Van Stryland, D. R., Williams, W. L., Wolfe. New York: McGraw-Hill.Google Scholar

  • [11] Mooney, J. M., Shepherd, F. D., Ewing, W. S., Silverman, J. (1989). Responsivity nonuniformity limited performance of infrared staring cameras, Opt. Eng. 28, 1151-1161.Google Scholar

  • [12] Chrzanowski, K. (2013). Review of night vision technology, Opto-Electron. Rev. 21, 153-182.Web of ScienceGoogle Scholar

  • [13] http://www.hamamatsu.com/resources/pdf/etd/II_TII0004E02.pdfGoogle Scholar

  • [14] Cameron, A. S. (1990). The development of the combiner eyepiece night vision goggle, Proc. SPIE 1290, 16-19.Google Scholar

  • [15] Csorba, I. P. (1985). Image Tubes, Indianapolis: Sams.Google Scholar

  • [16] https://customeronline.thalesgroup.com/sites/default/files/asset/document/hel_topowl_en.pdfGoogle Scholar

  • [17] Miller, J. L. (1994). Principles of Infrared Technology. New York: Van Nostrand Reinhold.Google Scholar

  • [18] STANAG No. 4349 Measurement of the Minimum Resolvable Temperature Difference (MRTD) of Thermal Cameras.Google Scholar

  • [19] Campana, S. B. (1993). The Infrared and Electro-Optical Systems Handbook, vol 5, Passive Electro- Optical Systems, SPIE Optical Engineering Press Bellingham.Google Scholar

  • [20] http://www.ipac.caltech.edu/pdf/FIR-SMM_Crosscutting_Whitepaper.pdfGoogle Scholar

  • [21] Chrzanowski, K. (2001). Non-Contact Thermometry-Measurement Errors, Research and Development Treaties, 7, Warsaw: SPIE Polish Chapter.Google Scholar

  • [22] http://www.landinst.comGoogle Scholar

  • [23] http://www.fluke.comGoogle Scholar

  • [24] http://www.vigo.com.plGoogle Scholar

  • [25] http://www.lumasense.comGoogle Scholar

  • [26] http://www.abb.comGoogle Scholar

  • [27] http://landsat.usgs.gov/band_designations_landsat_satellites.phpGoogle Scholar

  • [28] http://www.dlr.de/eoc/en/Portaldata/60/Resources/images/2_dfd_la/DFD-LA-AbbSpek_en_2048.jpgGoogle Scholar

  • [29] http://bioengineering/antiparticle?articled=1307622#r20Google Scholar

  • [30] Argall, P. S., Sica, R. J. (2003). Lidar (Laser Radar), in The Optics Encyclopedia, ed Th.G. Brown, K., Creath, H., Kogelnik, M. A., Kriss, J., Schmit, M. J., Weber. Berlin: Wiley-VCH.Google Scholar

  • [31] http://www.csc.noaa.gov/digitalcoast/_/pdf/lidar101.pdfGoogle Scholar

  • [32] http://oceanservice.noaa.gov/facts/lidar.htmlGoogle Scholar

  • [33] Svanberg, S. (1990). Environmental monitoring using optical techniques, in Applied Laser Spectroscopy, 417-434, Demtröder, W., Inguscio, M. New York: Plenum.Google Scholar

  • [34] Wolf, J. P., Kölsch, H. J., Rairoux, P., Wöste, L. (1990). Remote detection of atmospheric pollutants using differential absorption lidar techniques, in Applied Laser Spectroscopy, 435-467. Demtröder, W., Inguscio, M. New York: Plenum.Google Scholar

  • [35] Luft, K. V. (1943). Über eine neue Methode der Registrierenden Gasanalyse mit Hilfe der Absorption Ultraroter Strahlen ohne Spektrale Zerlegu, Z. Tech. Phys. 24, 97-104.Google Scholar

  • [36] Hodgkinson, J., Tatam, R. P. (2013). Optical gas sensing: a review, Meas. Sci. Technol. 24, 012004, 59.Google Scholar

  • [37] Chou, J. (2000). Hazardous Gas Monitors, New York: McGraw-Hill.Google Scholar

  • [38] Capasso, F., Gmachl, C., Paiella, R., Tredicucci, A., Hutchinson, A. L., Sivco, D. L., Baillargeon, J. N., Cho, A.Y. (2000). New frontiers in quantum cascade lasers and applications, IEEE Selected Topics in Quantum Electronics 6, 931-947.Google Scholar

  • [39] Yang, R. Q., Bradshaw, J. L., Bruno, J. D., Pham, J. T., Wortman, D. E. (2002). Mid-infrared type II interband cascade lasers, IEEE J. of Quant. Elect. 38, 547-558.Google Scholar

  • [40] Yoshimura, R., Kohtoku, M., Fujii, K., Sakamoto, T., Sakai, Y. (2014). Highly sensitive laser based tracegas sensor technology and its application to stable isotope ratio analysis, NTT Technical Review 12(4), 1-6. Google Scholar

About the article

Received: 2013-10-08

Revised: 2014-12-15

Accepted: 2014-10-16

Published Online: 2014-12-04

Published in Print: 2014-12-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.2478/mms-2014-0057.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in