Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …
Volume 22, Issue 1


In Situ Measurements of Atmospheric CO And Its Correlation With Nox And O3 at a Rural Mountain Site

Jingsong Li
  • Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
  • Anhui University, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Hefei, 230601, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Reiffs / Uwe Parchatka / Horst Fischer
Published Online: 2015-02-20 | DOI: https://doi.org/10.1515/mms-2015-0001


Ambient concentrations of CO, as well as NOx and O3, were measured as a part of the PARADE campaign conducted at the Taunus Observatory on the summit of the Kleiner Feldberg between the 8th of August and 9th of September 2011. These measurements were made in an effort to provide insight into the characteristics of the effects of both biogenic and anthropogenic emissions on atmospheric chemistry in the rural south-western German environment. The overall average CO concentration was found to be 100.3±18.1 ppbv (within the range of 71 to 180 ppbv), determined from 10-min averages during the summer season. The background CO concentration was estimated to be ~90 ppbv. CO and NOx showed bimodal diurnal variations with peaks in the late morning (10:00-12:00 UTC) and in the late afternoon (17:00-20:00 UTC). Strong correlations between CO and NOx indicated that vehicular emission was the major contributor to the notable CO plumes observed at the sampling site. Both local meteorology and backward trajectory analyses suggest that CO plumes were associated with anthropogenically polluted air masses transferred by an advection to the site from densely populated city sites. Furthermore, a good linear correlation of R2 = 0.54 between CO and O3 (∆O3/∆CO=0.560±0.016 ppbv/ppbv) was observed, in good agreement with previous observations

Keywords: Trace gas measurements; atmospheric CO; QCL sensor; sources relation; sources identification


  • [1] Chameides, W., Walker, J. C. (1973). A photochemical theory of tropospheric ozone. J.Geophys.Res.- Atmos., 78, 8751‒8760.CrossrefGoogle Scholar

  • [2] Logan, J. A., Prather, M. J., Wofsy, S. C., Mcelroy, M. B. (1981). Tropospheric chemistry - a global perspective. J. Geophys. Res.-Oceans, 86, 7210‒7254.CrossrefGoogle Scholar

  • [3] Thompson, A. M. (1992). The oxidizing capacity of the earth’s atmosphere: probable past and future changes. Science, 256, 1157‒1165.CrossrefGoogle Scholar

  • [4] Novelli, P. C., Steele, L. P., Tans, P. P. (1992). Mixing ratios of carbon monoxide in the troposphere.J. Geophys. Res.-Atmos., 97, 20731‒20750.CrossrefGoogle Scholar

  • [5] Graedel T. E., McRae J. E. (1980). On the possible increase of the atmospheric methane and carbon monoxide concentrations during the last decade. Geophys. Res. Lett., 7, 977‒979.CrossrefGoogle Scholar

  • [6] Thompson A. M., Cicerone, R. J. (1986). Possible perturbations to atmospheric CO, CH4, and OH.J. Geophys. Res. - Atmos., 91, 10853‒10864.CrossrefGoogle Scholar

  • [7] Wofsy, S. C. (1976). Interactions of CH4 and CO in the Earth's atmosphere. Annu. Rev. Earth Pl. Sci., 4, 441‒469.Google Scholar

  • [8] Sze, N. D. (1977). Anthropogenic CO emissions: Implications for the atmospheric CO-OH-CH4 cycle.Science, 195, 673‒675.CrossrefGoogle Scholar

  • [9] Novelli, P. C. (1999). CO in the atmosphere: measurement techniques and related issues. Chemosphere: Global Change Sci., 1, 115‒126.CrossrefGoogle Scholar

  • [10] Heszler, P., Ionescu, R., Llobet, E., Reyes, L. F., Smulko, J. M., Kish, L. B., and Granqvist, C. G. (2007).On the selectivity of nanostructured semiconductor gas sensors. Physica Status Solidi (b), 244, 4331‒4335.Web of ScienceCrossrefGoogle Scholar

  • [11] Zellweger, C., Steinbacher, M., Buchmann, B., (2012) Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements, Atmos. Meas. Tech., 5, 2555‒2567.CrossrefWeb of ScienceGoogle Scholar

  • [12] Fried, A., Diskin, G., Weibring, P., Richter, D., Walega, J.G., Sachse, G., Slate, T., Rana, M., Podolske, J. (2008). Tunable infrared laser instruments for airborne atmospheric studies. Appl. Phys. B 92, 409‒417.CrossrefWeb of ScienceGoogle Scholar

  • [13] Wienhold, F. G., Fischer, H., Hoor, P., Wagner, V., Königstedt, R., Harris, G. W., Anders, J., Grisar, R., Knothe, M., W. Riedel, J., Lübken, F.-J., Schilling, T. (1998). TRISTAR-a tracer in situ TDLAS for atmospheric research. Appl. Phys. B, 67, 411‒417.CrossrefGoogle Scholar

  • [14] Williams, J., Fischer, H., Hoor, P., Pöschl, U., Crutzen, P.J., Andreae, M.O., Lelieveld, J. (2001). The influence of the tropical rainforest on atmospheric CO and CO2 as measured by aircraft over Surinam, South America. Chemosphere: Global Change Sci., 3, 157‒170.Google Scholar

  • [15] Provencal, R., Gupta, M., Owano, T. G., Baer, D. S., Ricci, K. N., O’Keefe, A., Podolske, J. R. (2005).Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements. Appl. Opt., 44, 6712‒6717.CrossrefGoogle Scholar

  • [16] Schiller, C. L., Bozem, H., Gurk, C., Parchatka, U., Königstedt, R., Harris, G. W., Lelieveld, J., Fischer, H. (2008). Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO. Appl. Phys. B, 92, 419‒430.Google Scholar

  • [17] Viciani, S., D’amato, F., Mazzinghi, P., Castagnoli, F., Toci, G., Werle, P. (2008). A cryogenically operated laser diode spectrometer for airborne measurement of stratospheric trace gases. Appl. Phys. B, 90, 581‒592.Web of ScienceCrossrefGoogle Scholar

  • [18] Weidmann, D., Wysocki, G., Oppenheimer, C., Tittel, F. K. (2004). Development of a compact quantum cascade laser spectrometer for field measurements of CO2 isotopes. Appl. Phys. B, 80, 255‒260.Google Scholar

  • [19] Wada, R., Pearce, J. K., Nakayama, T., Matsumi, Y., Hiyama, T., Inoue, G., Shibata, T. (2011).Observation of carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR laser absorption spectroscopy. Atmos. Environ., 45, 1168‒1174.Web of ScienceGoogle Scholar

  • [20] Vanderover, J., Oehlschlaeger, M. A. (2010). A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K. Appl. Phys. B, 99, 353‒362.Google Scholar

  • [21] Moeskops, B. W. M., Naus, H., Cristescu, S. M., Harren, F. J. M. (2006). Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath. Appl. Phys. B, 82, 649‒654.CrossrefGoogle Scholar

  • [22] Li, J. S., Parchatka, U., Königstedt, R., Fischer, H. (2012). Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer. Opt. Express, 20, 7590‒7601.CrossrefWeb of ScienceGoogle Scholar

  • [23] Werle, P., Mazzinghi, P., D’Amato, F., De Rosa, M., Maurer, K., Slemr, F. (2004). Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochim. Acta Part A, 60, 1685‒1705.CrossrefGoogle Scholar

  • [24] Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J. P. (2009). The HITRAN 2008 molecular spectroscopic database.J Quant. Spectrosc. Radiat. Transfer, 110, 533‒572.CrossrefGoogle Scholar

  • [25] Li, J. S., Parchatka, U., Fischer, H. (2012). Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements. Appl. Phys. B, 108, 951‒963.CrossrefGoogle Scholar

  • [26] Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H., Bonn, B., Bingemer, H., Lelieveld, J. (2010). Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany. Atmos. Chem. Phys., 10, 2795‒2812.CrossrefWeb of ScienceGoogle Scholar

  • [27] Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams, J., Brookes, D. M., Monks, P. S., Lelieveld, J. (2011). Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state. Atmos. Chem. Phys., 11, 8497‒8513.CrossrefWeb of ScienceGoogle Scholar

  • [28] Hastie, D. R., Shepson, P. B., Reid, N., Roussel, P. B., Melo, O. T. (1996). Summertime NOx, NOy, and ozone at a site in rural Ontario. Atmos. Environ., 30, 2157‒2165.CrossrefGoogle Scholar

  • [29] Browne, E. C., Cohen, R. C. (2012). Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions. Atmos. Chem. Phys., 12, 11917‒11932.CrossrefWeb of ScienceGoogle Scholar

  • [30] Aneja, D.S. Kim, W.L. (1997). Chameides, Trends and analysis of ambient NO, NOy, CO, and Ozone concentrations in Raleigh, North Carolina. Chemosphere, 34, 611‒623.CrossrefGoogle Scholar

  • [31] Becker, K. H., Lörzer, J. C., Kurtenbach, R., Wiesen, P., Jensen, T. E., Wallington, T. J. (1999). Nitrous Oxide (N2O) Emissions from Vehicles. Environ. Sci. Technol., 33, 4134‒4139.Google Scholar

  • [32] Fischer, H., Nikitas, C., Parchatka, U., Zenker, T., Harris, G. W., Matuska, P., Schmitt, R., Mihelcic, D., Muesgen, P., Paetz, H.-W., Schultz, M., Volz-Thomas, A. (1998). Trace gas measurements during the Oxidizing Capacity of the Tropospheric Atmosphere campaign 1993 at Izaña. J. Geophys. Res.-Atmos., 103, 13505‒13518. CrossrefGoogle Scholar

  • [33] Parrish, D. D., Buhr, M. P., Trainer, M., Norton, R. B., Shimshock, J. P., Fehsenfeld, F. C., Anlauf, K. G., Bottenheim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M., Tanner, R. L., Newman, L., Bowersox, V.C., Olszyna, K. J., Bailey, E. M., Rodgers, M. O., Wang, T., Berresheim, H., Roychowdhury, U. K., Demerjiani, K. L. (1993). The total reactive nitrogen levels and the partitioning between the individual species at six rural sites in eastern North America. J. Geophys. Res.-Atmos., 98, 2927‒2939.CrossrefGoogle Scholar

  • [34] Chin, M., Jacob, D. J., Munger, J. W., Parrish, D. D., Doddridge, B. G. (1994). Relationship of ozone and carbon monoxide over North America. J. Geophys. Res.-Atmos., 99, 14565‒14573.CrossrefGoogle Scholar

  • [35] Wofsy, S. C., Sachse, G. W., Gregory, G. L., Blake, D. R., Bradshaw, J. D., Sandholm, S. T., Singh, H. B., Barrick, J. A., Harriss, R. C., Talbot, R. W. (1992). Atmospheric Chemistry in the Arctic and Subarctic: Influence of Natural Fires, Industrial Emissions, and Stratospheric Inputs, J. Geophys. Res. - Atmos., 97, 16731‒16746.CrossrefGoogle Scholar

  • [36] Mauzerall, D. L., Jacob, D. J., Fan, S. -M., Bradshaw, J. D., Sandholm, S. T., Blake, D. R., Gregory, G. L., Sachse, G. W. (1993). An ozone budget for the remote troposphere over eastern Canada. Eos Trams.AGU, 74, Fall Meeting Supplement 74,180. San Francisco, USA.Google Scholar

  • [37] Zhang, L., Jacob D., Bowman, K., Logan, J. A., Turquety, S., Hudman, R. C., Li, Q., Beer, R., Worden, H., Worden, J., Rinsland, C. P., Kulawik, S. S., Lampel, M. C., Shephard, M. W., Fisher, B. M., Eldering, A., Avery, M. (2006). Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions. Geophys. Res. Lett., 33, L18804.CrossrefGoogle Scholar

  • [38] Wetter, T. (1998). Eine Untersuchung zur Charakterisierung der Zeitlichen Variabilität det luftchemischen Bedingungen am Taunus-Observatorium: Messungen des CO und H2 Mischverhältnises im Winter 1996/7.Johan Wolfgang Goethe-Universität, Fachbereich Geowissenschaft, Frankfurt am Main. Google Scholar

About the article

Received: 2014-03-31

Accepted: 2014-09-14

Published Online: 2015-02-20

Published in Print: 2015-03-01

Citation Information: Metrology and Measurement Systems, Volume 22, Issue 1, Pages 25–38, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2015-0001.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nicolas Sobanski, Jim Thieser, Jan Schuladen, Carina Sauvage, Wei Song, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmospheric Chemistry and Physics, 2017, Volume 17, Number 6, Page 4115
Paolo Cristofanelli, Maurizio Busetto, Francescopiero Calzolari, Ivano Ammoscato, Daniel Gullì, Adelaide Dinoi, Claudia Roberta Calidonna, Daniele Contini, Damiano Sferlazzo, Angela Marinoni, Michela Maione, Paolo Bonasoni, Tatiana Di Iorio, and Salvatore Piacentino
Elem Sci Anth, 2017, Volume 5, Number 0, Page 12
Hao Deng, Juan Sun, Ningwu Liu, Hongliang Wang, Benli Yu, and Jingsong Li
Journal of Molecular Spectroscopy, 2017, Volume 331, Page 34

Comments (0)

Please log in or register to comment.
Log in