Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 22, Issue 1 (Mar 2015)

Issues

Very Sensitive Optical System with the Concentration and Decomposition Unit for Explosive Trace Detection

Beata Zakrzewska
  • Corresponding author
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-20 | DOI: https://doi.org/10.1515/mms-2015-0005

Abstract

The vapour pressure of most explosives is very low. Therefore, the explosive trace detection is very difficult. To overcome the problem, concentration units can be applied. At the Institute of Optoelectronics MUT, an explosive vapour concentration and decomposition unit to operate with an optoelectronic sensor of nitrogen dioxide has been developed. This unit provides an adsorption of explosive vapours from the analysed air and then their thermal decomposition. The thermal decomposition is mainly a chemical reaction, which consists in breaking up compounds into two or more simple compounds or elements. During the heating process most explosive particles, based on nitro aromatics and alkyl nitrate, release NO2 molecules and other products of pyrolysis. In this paper, the most common methods for the NO2 detection were presented. Also, an application of the concentration and decomposition unit in the NO2 optoelectronic sensor has been discussed.

Keywords: explosives trace detection; NO2 optoelectronic sensor; concentration and thermal decomposition

References

  • [1] Bielecki, Z., Janucki, J., Kawalec, A., Mikołajczyk, J., Palka, N., Pasternak, M., Pustelny, T., Stacewicz, T., Wojtas, J. (2012). Sensors and systems for the detection of explosive devices. Metrol. Meas. Syst., 19(1), 3-28.Web of ScienceGoogle Scholar

  • [2] Oxley, J. (1995). Explosives detection: potential problems. Proc. SPIE 2511, 217-225.Google Scholar

  • [3] Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., Ning, H. (2012). A survey on gas sensing technology. Sensors 12(7), 9635-9665.CrossrefWeb of ScienceGoogle Scholar

  • [4] Fine, G., Cavanagh, L., Afonja, A., Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 10(6), 5469-5502.CrossrefGoogle Scholar

  • [5] Williams, D. E. (1999). Semiconducting oxides as gas-sensitive resistors. Sens. Actuat. B-Chem. 57(1-3), 1-19.Google Scholar

  • [6] Cantalini, C., Pelino, M., Sun, H.T., Faccio, M., Santucci, S., Lozzi, L., Passacantando, M. (1996). Cross sensitivity and stability of NO2 sensors from WO3 thin film. Sens. Actuat. B-Chem. 35(1-3), 112-118.Google Scholar

  • [7] Shieh, J., Feng, H. M., Hon, M. H., Juang, H. Y. (2002). WO3 and W-Ti-O thin-film gas sensors prepared by sol-gel dip-coating. Sens. Actuat. B-Chem. 86(1), 75-80.Google Scholar

  • [8] Williams, D. E., Salmond, J., Yung. Y. F., Akali, J., Wright, B., Wilson, J., Henshaw, G. S., Wells, D. B., Ding, G., Wagner, J., Laing, G. (2009). Development of low-cost ozone and nitrogen dioxide measurement instruments suitable for use in an air quality monitoring network. In Proceedings of of IEEE Sensors, 1099-1104.Google Scholar

  • [9] Zeng, J., Hu, M., Wang, W., Chen, H., Qin, Y. (2012). NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens. Actuat. B-Chem. 161(1), 447-452.Web of ScienceGoogle Scholar

  • [10] Akamatsu, T., Itoh, T., Izu, N., Shin, W. (2013). NO and NO2 sensing properties of WO3 and Co3O4 based gas sensor. Sensors 13(9), 12467-12481.CrossrefGoogle Scholar

  • [11] Jasinski, P., Suzuki, T., Anderson, H.U. (2003). Nanocrystalline undoped ceria oxygen sensor. Sens. Actuat. B-Chem. 95(1), 73-77.Google Scholar

  • [12] Karaduman, I., Yıldız, D.E., Sincar, M.M., Acar, S. (2014). UV light activated gas sensor for NO2 detection. Mat. Sci. Semicon. Proc. 28, 43-47.Google Scholar

  • [13] Pan, X., Zhao, X., Chen, J., Bermak, A., Fan, Z. (2015). A fast-response/recovery ZnO hierarchical nanostructure based gas sensor with ultra-high room-temperature output response. Sens. Actuat. B-Chem. 206, 764-771. Available online 8th September 2014.Google Scholar

  • [14] Sharma, A., Tomar, M., Gupta, V. (2013). Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters. Sens. Actuat. B-Chem. 181, 735-742.Web of ScienceGoogle Scholar

  • [15] Ederth, J., Smulko, J.M., Kish, L.B., Heszler, P., Granqvish, C.G. (2006). Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films. Sens. Actuat. B-Chem. 113, 310-315.Google Scholar

  • [16] Hagleitner, C., Lange, D., Hierlemann, A., Brand, O., Baltes, H. (2002). CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid-St. Circ. 37(12), 1867-1878.CrossrefGoogle Scholar

  • [17] Navale, S.T., Mane, A.T., Chougule, M.A., Sakhare R.D., Nalage S.R., Patil V.B. (2014). Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synthetic Met. 189, 94-99.Web of ScienceGoogle Scholar

  • [18] Navale S.T., Mane A.T., Khuspe G.D., Chougule M.A., Patil V.B. (2014). Room temperature NO2 sensing properties of polythiophene films. Synthetic Met. 195, 228-233.Web of ScienceGoogle Scholar

  • [19] Thai, T.T., Yang, L., DeJean, G.R., Tentzeris, M.M. (2011). Nanotechnology enables wireless gas sensing. IEEE Microw. Mag. 12(4), 84-95.CrossrefWeb of ScienceGoogle Scholar

  • [20] Sayago, I., Santos, H., Horrill, M.C., Aleixandre, M., Fernández, M.J., Terrado, E., Tacchini, I., Aroz, R., Maser, W.K., Benito, A.M., Martínez, M.T., Gutiérrez, J., Muno, E. (2008). Carbon nanotube networks as gas sensors for NO2 detection. Talanta 77(2), 758-764.Web of ScienceCrossrefGoogle Scholar

  • [21] Lee, J-H., Kim, J., Seo, H., Song, J-W., Lee, E-S., Won, M., Han, C-S. (2008). Bias modulated highly sensitive NO2 gas detection using carbon nanotubes. Sens. Actuat. B-Chem. 129(2), 628-631.Google Scholar

  • [22] Jasinski, P. (2006). Solid-state electrochemical gas sensors. Materials Science-Poland 24(1), 269-278.Google Scholar

  • [23] Mizutani, Y., Matsuda, H., Ishiji, T., Furuya, N., Takahashi, K. (2005). Improvement of electrochemical NO2 sensor by use of carbon-fluorocarbon gas permeable electrode. Sens. Actuat. B-Chem. 108, 815-819.Google Scholar

  • [24] Wang, L., Han, B., Dai, L., Zhou, H., Li, Y., Wu, Y., Zhu, J. (2013). An amperometric NO2 sensor based on La10Si5NbO27.5 electrolyte and nano-structured CuO sensing electrode. J Hazard Mater. 262, 545-553.Web of ScienceGoogle Scholar

  • [25] Wang, L., Han, B., Dai, L., Li, Y., Zhou, H., Wang H. (2013). A La10Si5NbO27.5 based electrochemical sensor using nano-structured NiO sensing electrode for detection of NO2. Mater Lett 109, 16-19.Web of ScienceGoogle Scholar

  • [26] Zhou, L., Yuan, Q., Li, X., Xu, J., Xia, F., Xiao, J. (2015). The effects of sintering temperature of (La0.8Sr0.2)2FeMn6-8 on the NO2 sensing property for YSZ-based potentiometric sensor. Sens. Actuat. BChem. 206, 311-318.Google Scholar

  • [27] Oprea, A., Weimar, U., Simon, E., Fleischer, M., Frerichs, H.-P., Wilbertz, Ch., Lehmann, M. (2006). Copper phthalocyanine suspended gate field effect transistors for NO2 detection. Sens. Actuat. B-Chem. 118(1-2), 249-254.Google Scholar

  • [28] Andringa A-M., Smits E., Klootwijk J. H., de Leeuw D. M. (2013). Real-time NO2 detection at ppb level with ZnO field-effect transistors. Sens. Actuat. B-Chem.181, 668-673.Google Scholar

  • [29] Rosencwaig, A., Photoacoustics and Photoacoustic Spectroscopy. Willey, 1980.Google Scholar

  • [30] Saarela, J., Sorvajarvi, T., Laurila, T., Toivonen, J. (2011). Phase-sensitive method for backgroundcompensated photoacoustic detection of NO2 using high-power LEDs. Opt. Express 19(S4), A726-A732.Google Scholar

  • [31] Kosterev, A.A., Bakhirkin, Y.A., Curl, R.F., Tittel, F.K. (2002). Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 27(21), 1902-1904.Web of ScienceCrossrefGoogle Scholar

  • [32] Kosterev, A.A., Tittel, F.K., Serebryakov, D., Malinovsky, A., Morozov, A. (2005). Applications of quartz tuning fork in spectroscopic gas sensing. Rev. Sci. Instrum. 76(4), 043105:1-043105:9.Google Scholar

  • [33] Patimisco, P., Scamarcio, G., Tittel, F.K., Spagnolo, V. (2014). Quartz-Enhanced Photoacoustic Spectroscopy: A Review. Sensors 14(4), 6165-6205.CrossrefGoogle Scholar

  • [34] Yi, H., Liu, K., Chen, W., Tan, T., Wang, L., Gao, X. (2011). Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 36(4), 481-483.Web of ScienceCrossrefGoogle Scholar

  • [35] Zheng, H., Dong, L., Yin, X., Liu, X., Wu, H., Zhang, L., Ma, W., Yin, W., Jia, S. (2015). Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED. Sens. Actuat. B-Chem. 208, 173-179.Web of ScienceGoogle Scholar

  • [36] O’Keefe, A., Deacon, D.A. (1988). Cavity ring-down optical spectrometer for absorption measurements using pulsed laser source. Rev. Sci. Instrum. 59, 2544-2551.Google Scholar

  • [37] Romanini, D., Kachanov, A.A., Stoeckel F. (1997). Cavity ringdown spectroscopy: broad band absolute absorption measurements. Chem. Phys. Lett. 270(5-6), 546-550.CrossrefGoogle Scholar

  • [38] Hargrove, J., Wang, L., Muyskens, K., Muyskens, M., Medina, D., Zaide, S., Zhang, J. (2006). Cavity ringdown spectroscopy of ambient NO2 with quantification and elimination of interferences, Environ. Sci. Technol. 40(24), 7868-7873.CrossrefGoogle Scholar

  • [39] Patricia Castellanos, Winston T. Luke, Paul Kelley, Jeffrey W. Stehr, Sheryl H. Ehrman, Russell R. Dickerson. (2009). Modification of a commercial cavity ring-down spectroscopy NO2 detector for enhanced sensitivity. Rev. Sci. Instrum. 80(11), 113107:1 113107:6.Web of ScienceGoogle Scholar

  • [40] Sigrist, M. (1994). Air monitoring by spectroscopic techniques. New York: John Wiley & Sons.Google Scholar

  • [41] Triki, M., Cermak, P., M´Ejean, G., Romanini, D., (2008). Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis. Appl. Phys. B 91(1), 195-201.CrossrefGoogle Scholar

  • [42] Hamilton, D. J., Orr-Ewing, A. J. (2011). A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air. Appl Phys B 102(4), 879-890.CrossrefGoogle Scholar

  • [43] Wu, T., Coeur-Tourneur, C., Dhont, G., Cassez, A., Fertein, E., He, X., Chen, W. (2014). Simultaneous monitoring of temporal profiles of NO3, NO2 and O3 by incoherent broadband cavity enhanced absorption spectroscopy for atmospheric applications. J Quant Spectrosc Ra 133, 199-205.Web of ScienceGoogle Scholar

  • [44] Stacewicz, T., Wojtas, J., Bielecki, Z., Nowakowski, M., Mikolajczyk, J., Medrzycki, R., Rutecka, B. (2012). Cavity Ring Down Spectroscopy: detection of trace amounts of substance. Opto-Electron. Rev. 20(1), 53-60.Web of ScienceGoogle Scholar

  • [45] Singh, S. (2007). Sensors -An effective approach for the detection of explosives. J. Hazard. Mater., 144, (1-2), 15-28.Web of ScienceGoogle Scholar

  • [46] CIA Explosives for Sabotage Manual. (1987). USA, Colorado: Paladin Press.Google Scholar

  • [47] Senesac, L., Thundat, T. G. (2008). Nanosensors for trace explosive detection. Materials Today 11(3), 28-36.Web of ScienceCrossrefGoogle Scholar

  • [48] Klapotke, T. M. (2011). Chemistry of high-energy materials. Berlin: Walter de Gruyter.Google Scholar

  • [49] Munson, C. A., Gottfried, J. L., De Lucia, F. C., McNesby, Jr., K. L., Miziolek A. W. (2007). Laser-Based Detection Methods for Explosives. Aberdeen Proving Ground : Army Research Laboratory.Google Scholar

  • [50] Politzr, P., Murray, J. S. (Eds.). (2003). Energetic Materials, Part 1. Decomposition crystal and molecular properties. Amsterdam: Elsevier. Google Scholar

About the article

Received: 2014-09-22

Accepted: 2014-10-29

Published Online: 2015-02-20

Published in Print: 2015-03-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2015-0005.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in