Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …
Volume 22, Issue 1


Hydrogen Detection With a Gas Sensor Array – Processing and Recognition of Dynamic Responses Using Neural Networks

Patryk Gwiżdż
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Electronics, Mickiewicza Av. 30, 30-059 Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Brudnik
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Electronics, Mickiewicza Av. 30, 30-059 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Zakrzewska
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Electronics, Mickiewicza Av. 30, 30-059 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-20 | DOI: https://doi.org/10.1515/mms-2015-0008


An array consisting of four commercial gas sensors with target specifications for hydrocarbons, ammonia, alcohol, explosive gases has been constructed and tested. The sensors in the array operate in the dynamic mode upon the temperature modulation from 350°C to 500°C. Changes in the sensor operating temperature lead to distinct resistance responses affected by the gas type, its concentration and the humidity level. The measurements are performed upon various hydrogen (17-3000 ppm), methane (167-3000 ppm) and propane (167-3000 ppm) concentrations at relative humidity levels of 0-75%RH. The measured dynamic response signals are further processed with the Discrete Fourier Transform. Absolute values of the dc component and the first five harmonics of each sensor are analysed by a feed-forward back-propagation neural network. The ultimate aim of this research is to achieve a reliable hydrogen detection despite an interference of the humidity and residual gases.

Keywords: gas sensor; sensor array; temperature modulation; dynamic response; feature extraction; neural networks


  • [1] Barsan, N., Koziej, D., Weimar, U., (2007). Metal oxide-based gas sensor research: How to? Sensor.Actuat. B-Chem., (121), 18-35.Google Scholar

  • [2] Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R., (2010). Metal Oxide Gas Sensors: Sensitivity and influencing factors. Sensors, (10), 2088-2106.Web of ScienceGoogle Scholar

  • [3] Sobański, T., Szczurek, A., Nitsch, K., Licznerski, B.W., Radwan, W., (2006). Electronic nose applied to automotive fuel qualification. Sensor. Actuat. B-Chem., (116), 207-212.Google Scholar

  • [4] Szczurek, A., Maciejewska, M., (2004). Recognition of benzene, toluene and xylene using TGS array integrated with linear and non-linear classifier. Talanta, (64), 609-617.Google Scholar

  • [5] Gwiżdż, P., Brudnik, A., Zakrzewska, K., (2012). Temperature modulated response of gas sensors array - humidity interference. Proc. Eng., (47), 1045-1048.Google Scholar

  • [6] Gwiżdż, P., Brudnik, A., Zakrzewska, K., (2012). Temperature-modulated gas sensor array. Microelectron.Mater. Technol., Wydawnictwo Uczelniane Politechniki Koszalińskiej, (1), 196-206.Google Scholar

  • [7] An, W., Yang, C., (2012). Review on temperature modulation technology of gas sensors. App. Mech.Mater., (143-144), 567-571.Google Scholar

  • [8] Shi, Z. B., Yu, T., Zhao, Q., Li, Y., Lan, Y. B., (2008). Comparison of Algorithms for an Electronic Nose in Identifying Liquors. J. Bio. Eng., (5), 253-257.Google Scholar

  • [9] Lyson-Sypien, B., Czapla, A., Lubecka, M., Gwizdz, P., Schneider, K., Zakrzewska, K., Michalow, K., Graule, T., Reszka, A., Rekas, M., Lacz, A., Radecka, M., (2012). Nanopowders of chromium doped TiO2 for gas sensors. Sensor. Actuat. B-Chem., (175), 163-172.Google Scholar

  • [10] Jasiński, P., Suzuki, T., Anderson, H. U., (2003). Nanocrystalline undoped ceria oxygen sensor. Sensor.Actuat. B-Chem., (95), 73-77.Google Scholar

  • [11] Calavia, R., Mozalev, A., Vazquez, R., Gracia, I., Cane, C., Ionescu, R., Llobet, E., (2010). Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen. Sensor. Actuat. B-Chem., (149), 352-361.Google Scholar

  • [12] Koziej, D., Barsan, N., Weimar, U., Szuber, J., Shimanoe, K., Yamazoe, N., (2005). Water-oxygen interplay on tin dioxide surface: Implication on gas sensing. Chem. Phys. Lett., (410), 321-323.Google Scholar

  • [13] Neri, G., Bonavita, A., Pizzo, G., Galvagno, S., Donato, N., Caputi, L.S., (2004). A study of water influence on CO response on gold-doped iron oxide sensors. Sensor. Actuat. B-Chem., (101), 90-96.Google Scholar

  • [14] Balasubramaniana, S., Panigrahi, S., Logue, C.M., Gu, H., Marchello, M., (2009). Neural networksintegrated metal oxide-based artificial olfactory system for meat spoilage identification. J. Food Eng., (91), 91-98.Web of ScienceCrossrefGoogle Scholar

  • [15] Lee, D.S., Ban, S.W., Lee, M., Lee, D.D., (2005). Micro gas sensor array with neural network for recognizing combustible leakage gases. IEEE Sensor. J., (5), 530-536.Google Scholar

  • [16] Kermani, B.G., Schiffman, S.S., Nagle H.T., (2005). Performance of the Levenberg-Marquardt neural network training method in electronic nose applications. Sensor. Actuat. B-Chem., (110), 13-22.Google Scholar

  • [17] Pławiak, P., Maziarz, W., (2014). Classification of tea specimens using novel hybrid artificial intelligence methods. Sensor. Actuat. B-Chem., (192) 117-125.Web of ScienceGoogle Scholar

  • [18] Ortega, A., Marco, S., Perera, A., Šundic, T., Pardo A., Samitier J., (2001). An intelligent detector based on temperature modulation of a gas sensor with a digital signal processor. Sensor. Actuat. B-Chem., (78), 32-39.Google Scholar

  • [19] Nakata, S., Okunishi, H., Nakashima, Y., (2006). Distinction of gases with a semiconductor sensor under a cyclic temperature modulation with second-harmonic heating. Sensor. Actuat. B-Chem., (119) 556-561.Google Scholar

  • [20] Ionescu, R., Llobet, E., (2002). Wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors. Sensor. Actuat. B-Chem., (81) 289-295.Google Scholar

  • [21] Huang, X. J., Choi, Y. K., Yun, K. S., Yoon, E., (2006). Oscillating behaviour of hazardous gas on tin oxide gas sensor: Fourier and wavelet transform analysis. Sensor. Actuat. B-Chem., (115) 357-364.Google Scholar

  • [22] Szecowka, P. M., Szczurek, A., Licznerski, B.W., (2011). On reliability of neural network sensitivity analysis applied for sensor array optimization. Sensor. Actuat. B-Chem., (157) 298-303.Google Scholar

  • [23] Ngo, K. A., Lauque, P., Aguir, K., (2007). High performance of a gas identification system using sensor array and temperature modulation. Sensor. Actuat. B-Chem., (124) 209-216.Google Scholar

  • [24] Huang, J. R., Gu, C. P., Meng, F. L., Li, M. Q., Liu, J. H., (2007). Detection of volatile organic compounds by using a single temperature-modulated SnO2 gas sensor and artificial neural network. Sensors, (16) 209-216.Google Scholar

  • [25] Technical data about the UST GGS sensors published on http://www.umweltsensortechnik.de (May 2013). Google Scholar

About the article

Received: 2014-03-26

Accepted: 2014-11-13

Published Online: 2015-02-20

Published in Print: 2015-03-01

Citation Information: Metrology and Measurement Systems, Volume 22, Issue 1, Pages 3–12, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2015-0008.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in