Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …
Volume 22, Issue 1


Measurement of Membrane Displacement with a Motionless Camera Equipped with a Fixed Focus Lens

Krzysztof Murawski
  • Corresponding author
  • Military University of Technology, Institute of Teleinformatics and Automatics, Kaliskiego Str. 2, 00-908 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-20 | DOI: https://doi.org/10.1515/mms-2015-0011


The paper presents a technique for measuring membrane displacements with one motionless camera. The method consists in measuring the distance to an object based on one image obtained from a motionless camera with a fixed-focus lens. The essence of the proposed measurement technique is to determine changes of the distance between a membrane and a video camera based on analysis of changes in the focus view of a marker placed on the membrane plane. It is proven that the used technique allows to monitor the frequency and amplitude of the membrane vibration. The tests were performed for the oscillation frequency in the range from 0.5 Hz to 6 Hz and deviations from the neutral position in the range of ±3 mm.

Keywords: measurement based on fuzzy signal; diaphragm displacement; image processing; motion sensor


  • [1] VEGA Americas, Inc. (2014). Technologies, Solutions, and Applications - Pressure Measurement.Google Scholar

  • [2] WIKA Instrument Corporation. (2014). WIKA Handbook - Pressure & Temperature Measurement U.S. Edition.Google Scholar

  • [3] Konieczny, G., Opilski, Z., Pustelny, T., Maciak, E. (2009). State of the work diagram of the artificial heart. Acta Phys. Pol. A, 116(3), 344-347.Google Scholar

  • [4] Martynkien, T., Szpulak, M., Statkiewicz, G., Golojuch, G., Olszewski, J., Urbanczyk, W., Wojcik, J., Mergo, P., Makara, M., Nasilowski, T., Berghmans, F., Thienpont, H. (2007). Measurements of sensitivity to hydrostatic pressure and temperature in highly birefringent photonic crystal fibers. Opt. Quant. Electron, 39(4-6), 481-489.Web of ScienceCrossrefGoogle Scholar

  • [5] Martynkien, T., Statkiewicz, G., Szpulak, M., Olszewski, J., Golojuch, G., Urbanczyk, W., Wojcik, J., Mergo, P., Makara, M., Nasilowski, T., Berghmans, F., Thienpont, H. (2007). Measurements of polarimetric sensitivity to temperature in birefringent holey fibres. Meas. Sci. Technol, 18(10), 3055-3060.CrossrefWeb of ScienceGoogle Scholar

  • [6] Konieczny, G., Opilski, Z., Pustelny, T. (2011). Preliminary research concerning measurements of the POLVAD blood chamber volume based on Helmholtz's acoustic resonator principle. Acta Phys. Pol. A, 120(4), 688-692.Google Scholar

  • [7] Cirulo, S., Mariscotti, A., Viacava, A. (2009). Helmholtz coil for high frequency high field intensity applications. Metrol. Meas. Syst., XVI (1), 117-127.Google Scholar

  • [8] Kisała, P. (2013). Measurement of the maximum value of non-uniform strain using a temperatureinsensitive fibre Bragg grating method. Opto-electronics Review, 21(3), 293-302.CrossrefWeb of ScienceGoogle Scholar

  • [9] Kisała, P. (2012). Application of inverse analysis to determine the strain distribution with optoelectronic method insensitive to temperature changes. Applied Optics, 51(16), 3599-3604.CrossrefWeb of ScienceGoogle Scholar

  • [10] Detka, M., Kaczmarek, Z. (2013). Distributed strain reconstruction based on a fiber Bragg grating reflection spectrum. Metrol. Meas. Syst., XX (1), 53-64.Web of ScienceGoogle Scholar

  • [11] Wierzba, P. (2008). Stability of an optical displacement sensor using a two-beam polarization interferometer. Metrol. Meas. Syst., 15(2), 205-213.Google Scholar

  • [12] Dobosz, M. (2012). Laser diode distance measuring interferometer - metrological properties. Metrol. Meas. Syst., XIX (3), 553-564.Google Scholar

  • [13] Murugarajan, A., Samuel, G. L. (2011). Measurement, modeling and evaluation of surface parameter using capacitive-sensor-based measurement system. Metrol. Meas. Syst., XVIII (3), 403-418.Google Scholar

  • [14] Brecker, H. N., Fromson, R. N., Shum, L. Y. (1977). A capacitance based surface texture measuring system. Annals of the CIRP, 25(1), 375-377.Google Scholar

  • [15] Dorrington, A. A., Jones, T. W., Danehy, P. M., Pappa, R. S. (2004). Membrane vibration analysis above the Nyquist limit with fluorescence videogrammetry, Proc. of SEM X International Congress and Exposition on Experimental and Applied Mechanics, Costa Mesa, CA, United States.Google Scholar

  • [16] Binua, S., Mahadevan Pillaia, V. P., Chandrasekaran, N. (2007). Fibre optic displacement sensor for the measurement of amplitude and frequency of vibration. Optics & Laser Technology, 39, 1537-1543.Google Scholar

  • [17] Różanowski, K., Murawski, K. (2012). An infrared sensor for eye tracking in a harsh car environment. Acta Phys. Pol. A, 122(5), 874-879.Google Scholar

  • [18] Różanowski, K., Murawski, K. (2013). Optical sensor to monitor pupillary light reflex. Acta Phys. Pol. A, 124(3), 558-562.CrossrefGoogle Scholar

  • [19] Murawski, K. (2010). Method for determining the position of the pupil-based on the labelling algorithm. Przegląd Elektrotechniczny, 9, 184-187.Google Scholar

  • [20] Murawski, K. (2010). Method for determining the position of the pupil for eyetracking applications. Proc. XV International Conference on Methods and Models in Automation and Robotics (MMAR), 356-362.Google Scholar

  • [21] Murawski, K., Różycki, R.; Murawski, P., Matyja, A., Rekas, M. (2013). An infrared sensor for monitoring meibomian gland dysfunction. Acta Phys. Pol. A, 124(3), 517-520.CrossrefGoogle Scholar

  • [22] Murawski, K., Różanowski, K. (2013). Pattern recognition algorithm for eye tracker sensor video data analysis. Acta Phys. Pol. A, 124(3), 509-512.CrossrefGoogle Scholar

  • [23] Murawski, K., Arciszewski, T., De Jong, K. (2000). Evolutionary computation in structural design. Engineering with Computers, 16(3-4), 275-286. 78 Google Scholar

About the article

Received: 2014-05-11

Accepted: 2014-11-17

Published Online: 2015-02-20

Published in Print: 2015-03-01

Citation Information: Metrology and Measurement Systems, Volume 22, Issue 1, Pages 69–78, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2015-0011.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in