Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 22, Issue 1 (Mar 2015)

Issues

Using the DDA (Discrete Dipole Approximation) Method in Determining the Extinction Cross Section of Black Carbon

Krzysztof Skorupski
  • Corresponding author
  • Wrocław University of Technology, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-20 | DOI: https://doi.org/10.1515/mms-2015-0013

Abstract

BC (Black Carbon), which can be found in the atmosphere, is characterized by a large value of the imaginary part of the complex refractive index and, therefore, might have an impact on the global warming effect. To study the interaction of BC with light often computer simulations are used. One of the methods, which are capable of performing light scattering simulations by any shape, is DDA (Discrete Dipole Approximation). In this work its accuracy was estimated in respect to BC structures using the latest stable version of the ADDA (vr. 1.2) algorithm. As the reference algorithm the GMM (Generalized Multiparticle Mie-Solution) code was used. The study shows that the number of volume elements (dipoles) is the main parameter that defines the quality of results. However, they can be improved by a proper polarizability expression. The most accurate, and least time consuming, simulations were observed for IGT_SO. When an aggregate consists of particles composed of ca. 750 volume elements (dipoles), the averaged relative extinction error should not exceed ca. 4.5%.

Keywords: black carbon; discrete dipole approximation; light scattering; fractal-like aggregates

References

  • [1] Bond, T.C. (2001). Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys. Res. Lett., 28(21), 4075-4078.CrossrefGoogle Scholar

  • [2] Adachi, K., Buseck, P.R. (2008). Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys., 8(21), 6469-6481.Web of ScienceCrossrefGoogle Scholar

  • [3] Adachi, K., Chung, S.H., Buseck P.R. (2010). Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res., 115(15), D15206.CrossrefGoogle Scholar

  • [4] Yurkin, M.A., Hoekstra, A.G. (2007). The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transf., 106(1), 558-589.CrossrefGoogle Scholar

  • [5] Draine, B.T., Flatau, P.J. (1994). Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11(4), 1491-1499.CrossrefGoogle Scholar

  • [6] Purcell, E.M., Pennypacker, C.R. (1973). Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705-714.Google Scholar

  • [7] Yurkin, M.A., Hoekstra, A.G. (2011). The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf., 112(13), 2234-2247.Web of ScienceCrossrefGoogle Scholar

  • [8] Xu, Y.-L, Gustafson, B.A.S. (2001). A generalized multiparticle mie-solution: further experimental verification. J. Quant. Spectrosc. Radiat. Transf., 15(4), 395-419.CrossrefGoogle Scholar

  • [9] Mackowski, D.W., Mishchenko, M.I. (2011). A multiple sphere T-matrix FORTRAN code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transf., 112(13), 2182-2192.CrossrefWeb of ScienceGoogle Scholar

  • [10] Bond, T.C., Bergstrom, R.W. (2006). Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol. Sci. Tech., 40(1), 27-67.CrossrefGoogle Scholar

  • [11] Andreae, M.O., Galencser, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6(10), 3131-3148.CrossrefGoogle Scholar

  • [12] Wentzel, M., Gorzawski, H., Naumann, K.H., Saathoff, H., Weinbruch, S. (2003). Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J. Aerosol. Sci., 34(10), 1347-1370.CrossrefGoogle Scholar

  • [13] Chaumet, P.C., Sentenac, A., Rahmani, A. (2004). Coupled dipole method for scatterers with large permittivity. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 70(32), 036606-1-036606-6.CrossrefGoogle Scholar

  • [14] Yurkin, M.A, Min, M., Hoekstra, A.G. (2010). Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 82(3), 036703.CrossrefGoogle Scholar

  • [15] Yurkin, M.A., De Kanter, D., Hoekstra, A.G. (2010). Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles. J. Nanophotonics, 4(1), 041585.CrossrefWeb of ScienceGoogle Scholar

  • [16] Penttila, A., Zubko, E., Lumme, K., Muinonen, K., Yurkin, M.A., Draine, B., Rahola, J., Hoekstra, G., Shkuratov, Y. (2007). Comparison between discrete dipole implementations and exact techniques, J. Quant. Spectrosc. Radiat. Transf., 106(1), 417-436.CrossrefGoogle Scholar

  • [17] Charalampopoulos, T.T., Chang H. (1990). Determination of the wavelength dependence of refractive indices of flame soot. Proc. Math. Phys. Sci., 430, 577-591.Google Scholar

  • [18] Riefler, N., Di Stasio, S., Wriedt, T. (2004). Structural analysis of clusters using configurational and orientational averaging in light scattering analysis. J. Quant. Spectrosc. Radiat. Transf., 89(1), 323-342.CrossrefGoogle Scholar

  • [19] Piller, N.B., Martin, O.J.F. (1998). Increasing the Performance of the Coupled-Dipole Approximation: A Spectral Approach. IEEE Trans. Antennas Propag., 46(8), 1126-1137.CrossrefGoogle Scholar

  • [20] Hess, M., Koepke, P., Schult, I. (1998). Optical properties of aerosols and clouds: The software package OPAC. B. Am. Meteorol. Soc., 79(5), 831-844.CrossrefGoogle Scholar

  • [21] Filippov, A.V., Zurita M., Rosner D.E. (2000). Fractal-like aggregates: Relation between morphology and physical properties. J. Colloid Interface Sci., 229(1), 261-273.CrossrefGoogle Scholar

  • [22] Skorupski, K., Mroczka, J., Wriedt, T., Riefler, N. (2014). A fast and accurate implementation of tunable algorithms used for generation of fractal-like aggregate models. Physica A, 404, 106-117.Web of ScienceGoogle Scholar

  • [23] Van Poppel, L.H., Friedrich, H., Spinsby, J., Chung S.H., Seinfeld J.H., Buseck P.R. (2005). Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot. Geophys. Res. Lett., 32(24), 1-4.CrossrefGoogle Scholar

  • [24] Mroczka, J., Wozniak, M., Onofri, F.R.A. (2012). Algorithms and methods for analysis of the optical structure factor of fractal aggregates. Metrol. Meas. Syst., 19(3), 459-470.Google Scholar

  • [25] Wozniak, M., Onofri, F.R.A., Barbosa, S., Yon, J., Mroczka, J. (2012). Comparison of methods to derive morphological parameters of multi-fractal samples of particle aggregates from TEM images. J. Aerosol Sci., 47, 12-26.CrossrefWeb of ScienceGoogle Scholar

  • [26] Mroczka, J., Szczuczynski, D. (2013). Improved technique of retrieving particle size distribution from angular scattering measurements. J. Quant. Spectrosc. Radiat. Transf., 129, 48-59.Web of ScienceGoogle Scholar

  • [27] Wriedt, T., Hellmers, J., Eremina, E., Schuh, R. (2006). Light scattering by single erythrocyte: Comparison of different methods. J. Quant. Spectrosc. Radiat. Transf., 100(1), 444-456.CrossrefGoogle Scholar

  • [28] Nilsson, A.M.K., Alsholm P., Karlsson A., Andersson-Engels S. (1998). T-matrix computations of light scattering by red blood cells. Appl. Optics, 37(13), 2735-2748.CrossrefGoogle Scholar

  • [29] Mroczka, J., Wysoczanski, D. (2000). Plane-wave and Gaussian-beam scattering on an infinite cylinder. Opt. Eng., 39(3), 763-770.CrossrefGoogle Scholar

  • [30] Girasole, T., Gouesbet, G., Grehan, G., Le Toulouzan, J.N., Mroczka, J., Ren, K.F., Wysoczanski, D. (1997). Cylindrical fibre orientation analysis by light scattering. Part 2: Experimental aspects. Part. Part. Syst. Char, 14(5), 211-218.Google Scholar

  • [31] Girasole, T., Bultynck, H., Gouesbet, G., Grehan, G., Le Meur, F., Le Toulouzan, J.N., Mroczka, J., Wysoczanski, D. (1997). Cylindrical fibre orientation analysis by light scattering. Part 1: Numerical aspects. Part. Part. Syst. Char., 14(4), 163-174. Google Scholar

  • [32] Girasole, T., Le Toulouzan, J.N., Mroczka, J., Wysoczanski D. (1997). Fiber orientation and concentration analysis by light scattering: Experimental setup and diagnosis. Rev. Sci. Instrum., 68(7), 2805-2811.CrossrefGoogle Scholar

  • [33] Skorupski, K., Mroczka, J. (2014). Effect of the necking phenomenon on the optical properties of soot particles. J. Quant. Spectrosc. Radiat. Transf., 141, 40-48.Google Scholar

  • [34] Skorupski, K., Mroczka, J., Riefler, N., Oltmann, H., Will, S., Wriedt, T. Impact of morphological parameters onto simulated light scattering patterns (2013). J. Quant. Spectrosc. Radiat. Transf., 119, 53-66.Google Scholar

  • [35] Mroczka, J. (2013). The cognitive process in metrology. Measurement, 46(8), 2896-2907. CrossrefGoogle Scholar

About the article

Received: 2014-09-30

Accepted: 2014-11-27

Published Online: 2015-02-20

Published in Print: 2015-03-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2015-0013.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael I. Mishchenko, Nadezhda T. Zakharova, Nikolai G. Khlebtsov, Gorden Videen, and Thomas Wriedt
Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, Volume 178, Page 276
[2]
Fabian Heisler, Ekaterina Babich, Sergey Scherbak, Semen Chervinskii, Mehedi Hasan, Anton Samusev, and Andrey A. Lipovskii
The Journal of Physical Chemistry C, 2015, Volume 119, Number 47, Page 26692

Comments (0)

Please log in or register to comment.
Log in