Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …
Volume 22, Issue 1


Active Stabilization of the Beam Pointing of a High- Power KrF Laser System

A. Barna1
  • Corresponding author
  • University of Szeged, Department of Experimental Physics, Dóm tér 9., 6720 Szeged, Hungary
  • Wigner Research Centre for Physics, Hungarian Academy of Sciences, Association EURATOM HAS, P.O.B. 49, 1525 Budapest, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. B. Földes
  • Wigner Research Centre for Physics, Hungarian Academy of Sciences, Association EURATOM HAS, P.O.B. 49, 1525 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Bohus / S. Szatmári
Published Online: 2015-02-20 | DOI: https://doi.org/10.1515/mms-2015-0014


An active beam-pointing stabilization system has been developed for a high-power KrF laser system to eliminate the long-term drift of the directional change of the beam in order to have a stable focusing to a high intensity. The control of the beam direction was achieved by a motor-driven mirror activated by an electric signal obtained by monitoring the position of the focus of the output beam. Instead of large sized UV-sensitive position sensitive detectors a simple arrangement with scatter plates and photodiodes are used to measure the directionality of the beam. After the beam stabilization the long-term residual deviation of the laser shots is ~14 μrad, which is comparable to the shot-to-shot variation of the beam (~12 μrad). This deviation is small enough to keep the focal spot size in a micrometer range when tightly focusing the beam using off-axis parabolic mirrors.

Keywords: diffraction-limited UV pulse; beam-pointing stabilization; long-term drift; photodiode


  • [1] Szatmári, S. (1994) High-Brightness Ultraviolet Excimer Lasers, Appl. Phys. B, 58, 221-223.Google Scholar

  • [2] Szatmári, S., Schäfer, F. P. (1988) Simplified laser system for the generation of 60 fs pulses at 248 nm, Opt. Commun. 68, 196-202.Google Scholar

  • [3] Mingesz, R., Gingl, Z., Almási, G., Csengeri, A., Makra, P. (2008) Utilising jitter noise in the precise synchronization of laser pulses, Fluctuation and Noise Letters 8, 41-49.CrossrefWeb of ScienceGoogle Scholar

  • [4] Cui, S., Soh, Y. C. (2010) Improved measurement accuracy of the quadrant detector through improvement of linearity index, Applied Physics Letters 96, 081102-1-3.CrossrefWeb of ScienceGoogle Scholar

  • [5] Grafstrom, S., Harbarth, U., Kowalski, J., Neumann, R., Noethe, S. (1988) Fast laser beam position control with submicroradian precision, Optics Communications 65, 121-126.CrossrefGoogle Scholar

  • [6] Karl, L. (2009) Automatic beam alignment system for a pulsed infrared laser, Review of Scientific Instruments 80 013102-1-5.Web of ScienceCrossrefGoogle Scholar

  • [7] Kanai, T., Suda, A., Bohman, S., Kaku, M., Yamaguchi, S. (2008) Pointing stabilization of a highrepetition- rate high-power femtosecond laser for intense few-cycle pulse generation, Applied Physics Letters 92, 061106-1-3.CrossrefGoogle Scholar

  • [8] Genoud, G., Wojda, F., Burza, M., Persson, A., Wahlström, C. G. (2011) Active control of the pointing of a multi-terawatt laser, Review of Scientific Instruments 82, 033102-1-6.Web of ScienceCrossrefGoogle Scholar

  • [9] Mori, M., Pirozhkov, A., Nishiuchi, M., Ogura, K., Sagisaka, A., Hayashi, Y., Orimo, S., Fukumi, A., Li, Z., Kado, M., Daido, H., (2006) Development of Beam-Pointing Stabilizer on a 10-TW Ti:Al2O3 Laser System JLITE-X for Laser-Excited Ion Accelerator Research, Laser Physics 16, 1092-1095.CrossrefGoogle Scholar

  • [10] Szatmár, S., Almási, G., Feuerhake, M., Simon, P. (1996) Production of intensities of ~1019 W/cm2 by a table-top KrF laser, Appl. Phys. B 63,463-466.Google Scholar

  • [11] Békési, J., Szatmári, S., Simon, P., Marowsky, G. (2002) Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz, Appl. Phys. B 75, 521-524.Google Scholar

  • [12] Saemann, A. (1999) Generating a hot plasma at solid density by irradiation with 150 fs long laser pulses, (Erzeugung eines heißen Plasmas bei Festkörperdichte durch Einstrahlung von 150 fs langen Laserpulsen) PhD thesis, Max-Planck Institute for Quantum Optics, 242, 36, 44.Google Scholar

  • [13] Rácz, E., Földes, I. B., Kocsis, G., Veres, G., Eidmann, K., Szatmári, S. (2006) On the effect of surface rippling on the generation of harmonics in laser plasmas, Appl. Phys. B 82, 13-18. CrossrefGoogle Scholar

About the article

Received: 2014-06-03

Accepted: 2014-12-31

Published Online: 2015-02-20

Published in Print: 2015-03-01

Citation Information: Metrology and Measurement Systems, Volume 22, Issue 1, Pages 165–172, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2015-0014.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in