Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …

An Analysis Of Tensile Test Results to Assess the Innovation Risk for an Additive Manufacturing Technology

Stanisław Adamczak
  • Corresponding author
  • Department of Manufacturing Engineering and Metrology Kielce University of Technology, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Bochnia
  • Department of Manufacturing Engineering and Metrology Kielce University of Technology, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bożena Kaczmarska
  • Department of Production Engineering Kielce University of Technology, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-20 | DOI: https://doi.org/10.1515/mms-2015-0015


The aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was determined for three printing orientations. The results suggest that the material used to fabricate the tensile specimens shows clear anisotropy of the properties in relation to the printing direction.

Keywords: Failure Mode and Effects Analysis; static tensile test; measurement uncertainty


  • [1] Liu, H.C., Liu, L., Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Systems with Applications, 40, 828-838.Google Scholar

  • [2] Su, X., Deng, Y., Mahadevan, S., Bao, Q. (2012). An improved method for risk evaluation in failure modes and effects analysis of aircraft engine rotor blades. Engineering Failure Analysis, 26, 164-174.Web of ScienceCrossrefGoogle Scholar

  • [3] Kolich, M. (2014). Using failure mode and effects analysis to design a comfortable automotive driver seat. Applied Ergonomic, 45, 1087-1096.CrossrefGoogle Scholar

  • [4] Chen, P.-S., Wu, M.-T. (2013). A modified failure mode and effects analysis method for supplier selection problems in the supply chain risk environment: A case study. Computers and Industrial Engineering, 66, 634-642.Web of ScienceCrossrefGoogle Scholar

  • [5] Wirandi, J., Alexander, A. (2006). Uncertainty and traceable calibration - how modern measurement concepts improve product quality in process industry. Measurement, 39, 612-620.CrossrefGoogle Scholar

  • [6] Hiller, J., Reindl, L. M. (2012). A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography. Measurement, 45, 2166-2182.CrossrefGoogle Scholar

  • [7] Sen, M., Shan, H. S. (2005). Analysis of hole quality characteristics in the electro jet drilling process. International Journal of Machine Tools & Manufacture, 45, 1706-1716.Google Scholar

  • [8] Asiltürk, I., Süleyman, Neseli S. (2012). Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement, 45, 785-794.CrossrefGoogle Scholar

  • [9] Campbell, I., Bourell, D., Gibson, I. (2012). Additive manufacturing: rapid prototyping comes of age. Rapid Prototyping Journal, 18, 4, 255-258.Web of ScienceCrossrefGoogle Scholar

  • [10] Puebla, K., Arcaute, K., Quintana, R., Wicker, R.B. (2012). Effects of environmental conditions. aging. and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography. Rapid Prototyping Journal, 18, 5, 374-388.CrossrefWeb of ScienceGoogle Scholar

  • [11] Chockalingam, K., Jawahar, N., Chandrasekhar, U. (2006). Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyping Journal, 12, 2, 106-113.CrossrefGoogle Scholar

  • [12] Quintana, R., Puebla, K., Wicker, R.B. (2010). Effects of build orientation on tensile strength for stereolithography manufactured ASTM D-638 type I specimens of DSM Somosw 11120 resin. Journal of Advanced Manufacturing Technology, 46, 201-15.Web of ScienceGoogle Scholar

  • [13] Kęsy, A., Kotliński, J. (2010). Mechanical properties of parts produced by using polymer jetting technology. Archives of Civil and Mechanical Engineering, X, 3, 37-50.Google Scholar

  • [14] Hambali, R.H., Celik, H.K., Smith, P.C., Rennie, A.E.W., Ucar, M. (2010). Effect of Build Orientation on FDM Parts: A Case Study for Validation of Deformation Behaviour by FEA. iDECON 2010 - International Conference on Design and Concurrent Engineering Universiti Teknikal Malaysia Melaka (UTeM), 224-228.Google Scholar

  • [15] Radziszewski, L. (2004). Intrusive effect of a contact transducer on testing results, Metrology and Measurement Systems, XI, 1, 31-43.Google Scholar

  • [16] Radziszewski L., Kekez M. (2009). Application of a genetic-fuzzy system to diesel engine pressure modeling. The International Journal of Advanced Manufacturing Technology, 46, 1-4, 1-9.Web of ScienceCrossrefGoogle Scholar

  • [17] Cedro, L., Janecki D. (2011). Determining of Signal Derivatives in Identification Problems - FIR Differential Filters, Acta Montanistica Slovaca, R 16, cz. 1, 47-54.Google Scholar

  • [18] ISO. Standard 527-1 (2012). Plastics - determination of tensile properties - Part 1: General principles.Google Scholar

  • [19] Inspekt Mini (2011). Universal testing machine Inspekt mini 3kN. Hegewald & Peschke MPT GmbH.Google Scholar

  • [20] LabMaster software (2011). Version Scholar

  • [21] Adamczak, S., Bochnia, J., Kaczmarska, B. (2014). Estimating the uncertainty of ten sile stength measurement for a photocured material produced by additive manufacturing. Metrology and Measurements Systems, XXI, 3, 553-560.Google Scholar

  • [22] Adamczak, S., Makieła, W. (2010). Fundamentals of metrology and quality engineering for mechanical engineers. WNT.Google Scholar

  • [23] ISO. Standard 6892-1 (2009). Metallic materials - Tensile testing - Part 1: Method of test at room temperature.Google Scholar

  • [24] Hamrol, A. (2005). Quality management with examples. Wydawnictwo Naukowe PWN. Warszawa, 327-336.Google Scholar

  • [25] Stępień, K., Makieła, W. (2013). An analysis of deviations of cylindrical surfaces with the use of wavelet transform. Metrology and Measurement Systems, XX, 1, 139-158.Google Scholar

  • [26] Janusiewicz, A., Adamczak, S., Makieła, W., Stępień, K. (2011). Determining the theoretical method error during an on-machine roundness measurement. Measurement, 44/9, 1761-1767. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-07-31

Accepted: 2015-01-12

Published Online: 2015-02-20

Published in Print: 2015-03-01

Citation Information: Metrology and Measurement Systems, Volume 22, Issue 1, Pages 127–138, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2015-0015.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexander M. Pankonien and Gregory W. Reich
AIAA Journal, 2017, Page 1
J. C. E. Mertens, K. Henderson, N. L. Cordes, R. Pacheco, X. Xiao, J. J. Williams, N. Chawla, and B. M. Patterson
Journal of Materials Science, 2017, Volume 52, Number 20, Page 12185
Slawomir Blasiak, Jakub E. Takosoglu, Pawel A. Laski, Dawid S. Pietrala, Jaroslaw Zwierzchowski, Gabriel Bracha, Lukasz Nowakowski, Malgorzata Blasiak, and P. Dančová
EPJ Web of Conferences, 2017, Volume 143, Page 02008
Stanisław Adamczak and Jerzy Bochnia
Metrology and Measurement Systems, 2016, Volume 23, Number 4
Lindsey Bass, Nicholas Alexander Meisel, and Christopher B. Williams
Rapid Prototyping Journal, 2016, Volume 22, Number 5, Page 826
Slawomir Blasiak
International Journal of Heat and Mass Transfer, 2016, Volume 100, Page 79
Sofiane Guessasma, Weihong Zhang, Jihong Zhu, Sofiane Belhabib, and Hedi Nouri
International Journal for Simulation and Multidisciplinary Design Optimization, 2015, Volume 6, Page A9
Sarah K. Everton, Matthias Hirsch, Petros Stravroulakis, Richard K. Leach, and Adam T. Clare
Materials & Design, 2016, Volume 95, Page 431

Comments (0)

Please log in or register to comment.
Log in