Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …

A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

Sze-Wei Khoo
  • Corresponding author
  • Universiti Tunku Abdul Rahman, Jalan Universiti, Department of Industrial Engineering, Bandar Barat, 31900 Kampar, Perak, Malaysia
  • Universiti Teknologi PETRONAS, Department of Mechanical Engineering, 32610 Bandar Seri Iskandar, Perak, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saravanan Karuppanan / Ching-Seong Tan
Published Online: 2016-07-14 | DOI: https://doi.org/10.1515/mms-2016-0028


Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

Keywords: surface deformation; strain measurement; two-dimensional digital image correlation


  • [1] Haglage, T.L., Wood, H.A. (1969). Scratch strain gage evaluation. Air Force Flight Dynamics Lab. Wright-Patterson Air Force Base, Ohio. Tech. Rep. AFFDL-TR-69-25.Google Scholar

  • [2] Khan, A.S., Wang, X.W. (2001). Metal-foil resistance strain gages. Strain measurements and Stress Analysis. New Jersey: Prentice Hall.Google Scholar

  • [3] Epsilon Tech. Co., Wyoming, USA. (2010). http://www.epsilontech.com/3542.htmGoogle Scholar

  • [4] Principles of Stresscoat, Brittle Coating for Experimental Stress Analysis, Oconomowoc, WI, USA. (2010). http://stresscoat.com/SCManual.pdfGoogle Scholar

  • [5] Khan, A.S., Wang, X.W. (2001). Photoelasticity. Strain Measurements and Stress Analysis. New Jersey: Prentice Hall.Google Scholar

  • [6] Khan, A.S., Wang, X.W. (2001). Photoelastic-coating method. Strain Measurements and Stress Analysis. New Jersey: Prentice Hall.Google Scholar

  • [7] Good practice guide to geometric moiré for in plane displacement or strain analysis. SPOTS Standard Part III (1), 2005, G6RD-CT-2002-00856.Google Scholar

  • [8] Khan, A.S., Wang, X.W. (2001). Holographic interferometry. Strain Measurements and Stress Analysis. New Jersey: Prentice Hall.Google Scholar

  • [9] Fein, H. (1997). Holographic Interferometry: Non-destructive tool. The Industrial Physicist, American Institute of Physics.Google Scholar

  • [10] Pan, B., Qian, K., Xie, H., Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Measurement Sci. and Tech., 20(6), 1−17.Google Scholar

  • [11] Sutton, M.A. (2008). Digital image correlation for shape and deformation measurements. Handbook of Experimental Solid Mechanics. New York: Springer.Google Scholar

  • [12] Sutton, M.A., Orteu, J.J., Schreier, H.W. (2009). DIC. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer, 83.Google Scholar

  • [13] Huang, Y.H., (2004). Development of digital image correlation method for displacement and shape measurement. M.Sc. Thesis. Mech. Dept., National University of Singapore, Singapore.Google Scholar

  • [14] Giachetti, A. (2000). Matching techniques to compute image motion. Image Vis. Comput., 18, 247−260.Google Scholar

  • [15] Sutton, M.A., Orteu, J.J., Schreier, H.W. (2009). DIC. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer, 95.Google Scholar

  • [16] Sutton, M.A., Orteu, J.J., Schreier, H.W. (2009). DIC. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer, 88.Google Scholar

  • [17] Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F., McNeill, S.R. (1983). Determination of displacements using an improved digital image correlation method. Image Vis. Comput., 1(3), 133−139.Google Scholar

  • [18] Chu, T.C., Ranson, W.F., Sutton, M.A., Peters, W.H. (1985). Applications of digital image correlation techniques to experimental mechanics. Experimental Mechanics, 25(3), 232−244.CrossrefGoogle Scholar

  • [19] Bruck, H.A., McNeill, S.R., Sutton, M.A., Peters, W.H. (1989). Digital image correlation using Newton- Raphson method of Partial Differential Correction. Experimental Mechanics, 29(3), 261−267.CrossrefGoogle Scholar

  • [20] Lu, H., Cary, P.D. (2000). Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Experimental Mechanics, 40(4), 393−400.CrossrefGoogle Scholar

  • [21] Cheng, P., Sutton, M.A., Schreier, H.W., McNeill, S.R. (2002). Full-field speckle pattern image correlation with B-Spline deformation function. Experimental Mechanics, 42(3), 344−352.CrossrefGoogle Scholar

  • [22] Peters, W.H., Ranson, W.F. (1982). Digital imaging techniques in experimental stress analysis. Optics Eng., 21(3), 427−342.Google Scholar

  • [23] Sutton, M.A., Cheng, M.Q., Peters, W.H., Chao, Y.J., McNeill, S.R. (1986). Application of an optimized digital correlation method to planar deformation analysis. Image Vis. Comput., 4(3), 143−150.Google Scholar

  • [24] Hovis, G.L. (1989). Centroidal tracking algorithm for deformation measurements using gray scale digital images. Ph.D. dissertation. University of South Carolina, USA.Google Scholar

  • [25] Glover, C., Jones, H. (1994). Stress, strain and deformation in solids. Conservation Principles of Continuous Media. Texas: McGraw-Hill.Google Scholar

  • [26] Khoo, S.W., Karuppanan, S., Abdul Latif, M.R.B. (2013). Development of an optical strain measurement method using digital image correlation. Asian J. of Scientific Research, 6(3), 411−422.Google Scholar

  • [27] Chen, D.J., Chiang, F.P., Tan, Y.S., Don, H.S. (1993). Digital speckle displacement measurement using a complex spectrum method. Applied Optics, 32(11), 1839−1849.CrossrefGoogle Scholar

  • [28] Vendroux, G., Knauss, W.G. (1998). Submicron deformation field measurements: Part 2. Improved digital image correlation. Experimental Mechanics, 38(2), 86−92.CrossrefGoogle Scholar

  • [29] Hung, P.C., Voloshin, A.S. (2003). In-plane strain measurement by digital image correlation. J. of the Brazilian Soc. of Mech. Sci. and Eng., 25(3), 215−221.Google Scholar

  • [30] Zhang, Z.F., Kang, Y.L., Wang, H.W., Qin, Q.H., Qiu, Y., Li, X.Q. (2006). A novel coarse-fine search scheme for digital image correlation method. Measurement, 39(8), 710−718.Google Scholar

  • [31] Paepegem, W.V., Shulev, A.A., Roussev, I.R., Pauw, S.D., Degrieck, J., Sainov, V.C. (2009). Study of the deformation characteristics of window security film by digital image correlation techniques. Optics and Lasers in Eng., 47(3−4), 390−397.Google Scholar

  • [32] Pan, B. (2009). Reliability-guided digital image correlation for image deformation measurement. Applied Optics, 48(8), 1535−1542.CrossrefGoogle Scholar

  • [33] Pan, B., Li, K. (2011). A fast digital image correlation method for deformation measurement. Optics and Lasers in Eng., 49(7), 841−847.Google Scholar

  • [34] Pan, B., Li, K., Tong, W. (2013). Fast, robust and accurate digital image correlation calculation without redundant computations. Experimental Mechanics, 53(7), 1277−1289.CrossrefGoogle Scholar

  • [35] Zhou, Y.H., Chen, Y.Q. (2012). Propagation function for accurate initialization and efficiency enhancement of digital image correlation. Optics and Lasers in Eng., 50(12), 1789−1797.Google Scholar

  • [36] Pan, B., Wu, D.F., Yong, X. (2012). Incremental calculation for large deformation measurement using reliability-guided digital image correlation. Optics and Lasers in Eng., 50(4), 586−592.Google Scholar

  • [37] Guo, X., Liang, J., Xiao, Z.Z., Cao, B.B. (2014). Digital image correlation for large deformation applied in Ti alloy compression and tension test. Optik, 125(18), 5316−5322.CrossrefGoogle Scholar

  • [38] Jiang, L.B., Xie, H.M., Pan, B. (2015). Speeding up digital image correlation computation using the integral image technique. Optics and Lasers in Eng., 65, 117−122.Google Scholar

  • [39] Mathworks, Integral Image. (2012). http://www.mathworks.com/help/vision/ref/integralimage.htmlGoogle Scholar

  • [40] Shao, X.X., Dai, X.J., He, X.Y. (2015). Noise robustness and parallel computation of the inverse compositional gauss-newton algorithm in digital image correlation. Optics and Lasers in Eng., 71, 9−19.Google Scholar

  • [41] Meng, L.B., Jin, G.C., Yao, X.F. (2007). Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation. Optics and Lasers in Eng., 45(1), 57−63.Google Scholar

  • [42] Cofaru, C., Philips, W., Paepegem, W.V. (2010). Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation. J. of Applied Optics, 49(33), 6472−6484.Google Scholar

  • [43] Cofaru, C., Philips, W., Paepegem, W.V. (2012). A novel speckle pattern-Adaptive digital image correlation approach with robust strain calculation. Optics and Lasers in Eng., 50(2), 187−198.Google Scholar

  • [44] Pan, B. (2013). Bias error reduction of digital image correlation using Gaussian pre-filtering. Optics and Lasers in Eng., 51(10), 1161−1167.Google Scholar

  • [45] Gonzalez, R.C., Woods, R.E., Eddins, S.L. (2004). Frequency domain processing. Digital Image Processing using MATLAB, New Jersey: Pearson Prentice Hall.Google Scholar

  • [46] Zhou, Y.H., Sun, C., Chen, J.B. (2014). Adaptive subset offset for systematic error reduction in incremental digital image correlation. Optics and Lasers in Eng., 55, 5−11.Google Scholar

  • [47] Yuan, Y., Huang, J.Y., Fang, J., Yuan, F., Xiong, C.Y. (2015). A self-adaptive sampling digital image correlation algorithm for accurate displacement measurement. Optics and Lasers in Eng., 65, 57−63.Google Scholar

  • [48] Mazzoleni, P., Matta, F., Zappa, E., Sutton, M.A., Cigada, A. (2015). Gaussian pre-filtering for uncertainty minimization in DIC using numerical-designed speckle patterns. Optics and Lasers in Eng., 66, 19−33.Google Scholar

  • [49] Sutton, M.A., McNeill, S.R., Jang, J., Babai, M. (1988). Effects of subpixel image restoration on digital correlation error estimates. Optics Eng., 27(10), 870−877. Google Scholar

  • [50] Schreier, H.W., Braasch, J.R., Sutton, M.A. (2000). Systematic errors in digital image correlation caused by intensity interpolation. Optics Eng., 39(11), 2915−2921.Google Scholar

  • [51] Schreier, H.W., Sutton, M.A. (2002). Systematic errors in digital image correlation due to undermatched subset shape functions. Experimental Mechanics, 42(3), 303−310.CrossrefGoogle Scholar

  • [52] Wang, C.B., Deng, J.M., Ateshian, G.A., Hung, T. (2002). An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. J. of Biomechanical Eng., 124(5), 557−567.Google Scholar

  • [53] Zhang, J., Jin, G.C., Ma, S.P., Meng, L.B. (2003). Application of an improved subpixel registration algorithm on digital speckle correlation measurement. Optics and Laser Tech., 35(7), 533−542.Google Scholar

  • [54] Lecompte, D., Smits, A., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D., Habraken, A.M. (2006). Quality assessment of speckle patterns for DIC. Optics and Lasers in Eng., 44(11), 1132−1145.Google Scholar

  • [55] Sun, Y.F., Pang, H.L. (2007). Study of optimal subset size in digital image correlation of speckle pattern images. Optics and Lasers in Eng., 45(9), 967−974.Google Scholar

  • [56] Haddadi, H., Belhabib, S. (2008). Use of rigid-body motion for the investigation and estimation of the measurement errors related to DIC technique. Optics and Lasers in Eng., 46(2), 185−196.Google Scholar

  • [57] Sutton, M.A., Yan, J.H., Tiwari, V., Scheier, H.W., Orteu, J.J. (2008). The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Optics and Lasers in Eng., 46(10), 746−757.Google Scholar

  • [58] Jerabek, M., Major, Z., Lang, R.W. (2010). Strain determination of polymeric materials using digital image correlation. Polymer Testing, 29(3), 407−416.CrossrefGoogle Scholar

  • [59] Liu, X.Y., Tan, Q.C., Xiong, L., Liu, G.D., Liu, J.Y., Yang, X., Wang, C.Y. (2012). Performance of iterative gradient-based algorithms with different intensity change models in digital image correlation. Optics and Laser Tech., 44(4), 1060−1067.Google Scholar

  • [60] Crammond, G., Boyd, S.W., Barton, J.M.D. (2013). Speckle pattern quality assessment for digital image correlation. Optics and Lasers in Eng., 51(12), 1368−1378.Google Scholar

  • [61] Hoult, N.A., Take, W.A., Lee, C., Dutton, M. (2013). Experimental accuracy of two-dimensional strain measurement using digital image correlation. Eng. Structures, 46, 718−726.Google Scholar

  • [62] Pan, B., Yu, L.P., Wu, D.F., Tang, L.Q. (2013). Systematic errors in two-dimensional digital image correlation due to lens distortion. Optics and Lasers in Eng., 51(2), 140−147.Google Scholar

  • [63] Dufour, J.E., Hild, F., Roux, S. (2014). Integrated digital image correlation for the evaluation and correction of optical distortions. Optics and Lasers in Eng., 56, 121−133.Google Scholar

  • [64] Zappa, E., Mazzoleni, P., Matinmanesh, A. (2014). Uncertainty assessment of digital image correlation method in dynamic applications. Optics and Lasers in Eng., 56, 140−151.Google Scholar

  • [65] Zappa, E., Matinmanesh, A., Mazzoleni, P. (2014). Evaluation and improvement of digital image correlation uncertainty in dynamics conditions. Optics and Lasers in Eng., 59, 82−92.Google Scholar

  • [66] Peters, W.H., Sutton, M.A., Ranson, W.F., Poplin, W.P., Walker, D.M. (1989). Whole-field experimental displacement analysis of composite cylinders. Experimental Mechanics, 29(1), 58−62.CrossrefGoogle Scholar

  • [67] McNeill, S.R., Sutton, M.A., Miao, Z., Ma, J. (1997). Measurement of surface profile using digital image correlation. Experimental Mechanics, 37(1), 13−20.CrossrefGoogle Scholar

  • [68] Wang, Y., Cuitino, A.M. (2002). Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int. J. of Solids and Structures, 39(13−14), 3777−3796.Google Scholar

  • [69] Zhang, J., Cai, Y.X., Ye, W.J., Yu, T.X. (2011). On the use of the digital image correlation method for heterogeneous deformation of porous solid. Optics and Lasers in Eng., 49(2), 200−209.Google Scholar

  • [70] Fayyad, T.M., Lees, J.M. (2014). Application of digital image correlation to reinforced concrete fracture. Procedia Materials Science, 3, 1585−1590.Google Scholar

  • [71] Wattrisse, B., Chrysochoos, A., Muracciole, J.M., Nemoz-Gaillard, M. (2000). Analysis of strain localization during tensile tests by digital image correlation. Experimental Mechanics, 41(1), 29−39.Google Scholar

  • [72] Savic, V., Hector, L.G., Fekete, J.R. (2008). Digital image correlation study of plastic deformation and fracture in fully martensitic steels. Experimental Mechanics, 50(1), 99−110.Google Scholar

  • [73] Wang, Z.Y., Li, H.Q., Tong, J.W., Shen, M., Aymerich, F., Priolo, P. (2008). Dual magnification digital image correlation based strain measurement in CFRP Laminates with open hole. Composites Sci. and Tech., 68(9), 1975−1980. Google Scholar

  • [74] Yang, G., Cai, Z.X., Zhang, X.C., Fu, D.H. (2015). An experimental investigation on the damage of granite under uniaxial tension by using a digital image correlation method. Optics and Lasers in Eng., 73, 46−52.Google Scholar

  • [75] McNeill, S.R., Peters, W.H., Sutton, M.A. (1987). Estimation of stress intensity factor by digital image correlation. Eng. Fracture Mechanics, 28(1), 101−112.Google Scholar

  • [76] Abanto-Bueno, J., Lambros, J. (2002). Investigation of crack growth in functionally graded materials using digital image correlation. Eng. Fracture Mechanics, 69(14−16), 1695−1711.Google Scholar

  • [77] Roux, S., Hild, F. (2006). Stress intensity factor measurements from digital image correlation: postprocessing and integrated approaches. Int. J. of Fracture, 140(1−4), 141−157.Google Scholar

  • [78] Lopez-Crespo, P., Shterenlikht, A., Patterson, E.A., Yates, J.R., Withers, P.J. (2008). The stress intensity of mixed mode cracks determined by digital image correlation. J. of Strain Analysis, 43(8), 769−780.Google Scholar

  • [79] Kanchanomai, C., Yamamoto, S., Miyashita, Y., Mutoh, Y., McEvily, A.J. (2002). Low cycle fatigue test for solders using non-contact digital image measurement system. Int. J. of Fatigue, 24, 57−67.Google Scholar

  • [80] Tao, G., Xia, Z.H. (2005). A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by DIC method. Polymer Testing, 24(7), 844−855.CrossrefGoogle Scholar

  • [81] Risbet, M., Feissel, P., Roland, T., Brancherie, D., Roelandt, J.M. (2010). Digital image correlation technique: application to early fatigue damage detection in stainless steel. Procedia Eng., 2(1), 2219−2227.Google Scholar

  • [82] Poncelet, M., Barbier, G., Raka, B., Courtin, S., Desmorat, R., Le-Roux, J.C., Vincent, L. (2010). Biaxial high cycle fatigue of a type 304L stainless steel: cyclic strains and crack initiation detection by digital image correlation. European J. of Mechanics A/Solids, 29(5), 810−825.Google Scholar

  • [83] Carroll, J., Efstathiou, C., Lambros, J., Sehitoglu, H., Hauber, B., Spottswood, S., Chona, R. (2009). Investigation of fatigue crack closure using multiscale image correlation experiments. Eng. Fracture Mechanics, 76(15), 2384−2398.Google Scholar

  • [84] Yusof, F., Lopez-Crespo, P., Withers, P.J. (2013). Effect of overload on crack closure in thick and thin specimens via digital image correlation. Int. J. of Fatigue, 56, 17−24.Google Scholar

  • [85] Mathieu, F., Hild, F., Roux, S. (2013). Image-based identification procedure of a crack propagation law. Eng. Fracture Mechanics, 103, 48−59.Google Scholar

  • [86] Srilakshmi, R., Ramji, M., Chinthapenta, V. (2015). Fatigue crack growth study of CFRP patch repaired Al 2014-T6 panel having an inclined center crack using FEA and DIC. Eng. Fracture Mechanics, 134, 182−201.Google Scholar

  • [87] Roux-Langlois, C., Gravouil, A., Baietto, M.C., Rethore, J., Mathieu, F., Hild, F., Roux, S. (2015). DIC identification and X-FEM simulation of fatigue crack growth based on the Williams’ series. Int. J. of Solids and Structures, 53, 38−47.Google Scholar

  • [88] Zhang, S.Q., Mao, S.S., Arola, D., Zhang, D.S. (2014). Characterization of the strain life fatigue properties of thin sheet metal using an optical extensometer. Optics and Lasers in Eng., 60, 44−48.Google Scholar

  • [89] Lopez-Crespo, P., Moreno, B., Lopez-Moreno, A., Zapatero, J. (2015). Characterization of crack-tip fields in biaxial fatigue based on high-magnification image correlation and electro-spray technique. Int. J. of Fatigue, 71, 17−25.Google Scholar

  • [90] Hild, F., Roux, S. (2006). Digital image correlation: From displacement measurement to identification of elastic properties. Strain, 42(2), 69−80.CrossrefGoogle Scholar

  • [91] Sutton, M.A., Chao, Y.J. (1988). Measurement of strains in a paper tensile specimen using computer vision and digital image correlation: Part 1 Data acquisition and image analysis system. Tappi J., 70(3), 153−155.Google Scholar

  • [92] Choi, D., Thorpe, J.L., Hanna, R.B. (1991). Image analysis to measure strain in wood and paper. Wood Sci. and Tech., 25(4), 251−262.Google Scholar

  • [93] Huang, Y.H., Liu, L., Sham, F.C., Chan, Y.S., Ng, S.P. (2010). Optical strain gauge vs. traditional strain gauges for concrete elasticity modulus determination. Optics, 121(18), 1635−1641.Google Scholar

  • [94] Sanchez-Arevalo, F.M., Garcia-Fernandez, T., Pulos, G., Villagran-Muniz, M. (2009). Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy. Materials Characterization, 60(8), 775−782.Google Scholar

  • [95] Tung, S.H., Shih, M.H., Kuo, J.C. (2010). Application of digital image correlation for anisotropic plastic deformation during tension testing. Optics and Lasers in Eng., 48(5), 636−641.Google Scholar

  • [96] Rethore, J., Roux, S., Hild, F. (2007). From pictures to extended finite elements: extended digital image correlation (X-DIC). C. R. Mecanique, 335(3), 131−137. Google Scholar

  • [97] Ferreira, M.D.C., Venturini, W.S., Hild, F. (2011). On the analysis of notched concrete beams: From measurement with digital image correlation to identification with boundary element method of a cohesive model. Eng. Fracture Mechanics, 78(1), 71−84.Google Scholar

  • [98] Wang, W.Z., Mottershead, J.E., Sebastian, C.M., Patterson, E.A. (2011). Shape features and finite element model updating from full-field strain data. Int. J. of Solids and Structures, 48(11−12), 1644−1657.Google Scholar

  • [99] Sozen, S., Guler, M. (2011). Determination of displacement distributions in bolted steel tension elements using digital image techniques. Optics and Lasers in Eng., 49(12), 1428−1435.Google Scholar

  • [100] Roux, S., Hild, F., Leclerc, H. (2012). Mechanical assistance to DIC. Procedia IUTAM, 4, 159−168.Google Scholar

  • [101] Deb, D., Bhattacharjee, S. (2015). Extended digital image correlation method for analysis of discrete discontinuity. Optics and Lasers in Eng., 74, 59−66.Google Scholar

  • [102] Leclerc, H., Perie, J.N., Roux, S., Hild, F. (2009). Integrated digital image correlation for the identification of mechanical properties. Computer Vision/Computer Graphics Collaboration Techniques, 5496, 161−171.Google Scholar

  • [103] Dong, Y.L., Kakisawa, H., Kagawa, Y. (2015). Development of microscale pattern for digital image correlation up to 1400°C. Optics and Lasers in Eng., 68, 7−15.Google Scholar

  • [104] Lyons, J.S., Liu, J., Sutton, M.A. (1996). High-temperature deformation measurements using digital image correlation. Experimental Mechanics, 36(1), 64−70.CrossrefGoogle Scholar

  • [105] Grant, B.M.B., Stone, H.J., Withers, P.J., Preuss, M. (2009). High-temperature strain field measurement using digital image correlation. J. of Strain Analysis, 44(4), 263−271.Google Scholar

  • [106] Pan, B., Wu, D.F., Xia, Y. (2010). High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation. Optics and Lasers in Eng., 48(9), 841−848.Google Scholar

  • [107] Wu, W., Peters, W.H., Hammer, M.E. (1987). Basic mechanical properties of retina in simple elongation J. of Biomechanical Eng., 109(1), 65−67.Google Scholar

  • [108] Hjortdal, J., Jensen, P.K. (1995). In vitro measurement of corneal strain, thickness, and curvature using digital image correlation. Acta Ophthalmol Scandinavica, 73(1), 5−11.Google Scholar

  • [109] Winder, R.J., Morrow, P.J., McRitchie, I.N., Bailie, J.R., Hart, P.M. (2009). Algorithms for digital image processing in diabetic retinopathy. Computerized Medical Imaging and Graphics, 33(8), 608−622.Google Scholar

  • [110] Lee, J.J., Shinozuka, M. (2006). Real time displacement measurement of a flexible bridge using digital image processing techniques. Experimental Mechanics, 46(1), 105−114.CrossrefGoogle Scholar

  • [111] Reu, P.L., Miller, T.J. (2008). The application of high-speed digital image correlation. J. of Strain Analysis, 43(8), 673−688.Google Scholar

  • [112] Xu, X., Wang, K.F., Gu, G.Q. (2013). An improved method for shape measurement using two-dimensional digital image correlation. Optics, 124(20), 4097−4099.Google Scholar

  • [113] Sun, Z.L., Lyons, J.S., McNeill, S.R. (1997). Measuring microscopic deformations with digital image correlation. Optics and Lasers in Eng., 27(4), 409−428.Google Scholar

  • [114] Vendroux, G., Knauss, W.G. (1998). Submicron deformation field measurements: Part I Developing a digital scanning tunnelling microscope. Experimental Mechanics, 38(1), 18−23.CrossrefGoogle Scholar

  • [115] Vendroux, G., Schmidt, N., Knauss, W.G. (1998). Submicron deformation field measurements: Part III Demonstration of deformation determinations. Experimental Mechanics, 38(3), 154−160.CrossrefGoogle Scholar

  • [116] Sutton, M.A., Li, N., Garcia, D., Cornille, N., Orteu, J.J., McNeill, S.R., Schreier, H.W., Li, X.D. (2006). Metrology in a scanning electron microscope: theoretical developments and experimental validation. Measurement Sci. and Tech., 17(10), 2613−2622.Google Scholar

  • [117] Jin, H., Lu, W.Y., Korellis, J. (2008). Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J. of Strain Analysis, 43(8), 719−728.Google Scholar

  • [118] Ya’akobovitz, A., Krylov, S., Hanein, Y. (2010). Nanoscale displacement measurement of electrostatically actuated micro-devices using optical microscopy and DIC. Sensors and Actuators A:Physical, 162(1), 1−7.Google Scholar

About the article

Received: 2015-10-15

Accepted: 2016-04-10

Published Online: 2016-07-14

Published in Print: 2016-09-01

Citation Information: Metrology and Measurement Systems, Volume 23, Issue 3, Pages 461–480, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2016-0028.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mónica Valenzuela-Delgado, Wendy Flores-Fuentes, Moisés Rivas-López, Oleg Sergiyenko, Lars Lindner, Daniel Hernández-Balbuena, and Julio Rodríguez-Quiñonez
Sensors, 2018, Volume 18, Number 6, Page 1683
Chi-Ying Lin and Bing-Cheng Hsu
Sensors, 2018, Volume 18, Number 5, Page 1548
Haifeng Xu, Duyi Ye, and Linbo Mei
Materials Science and Engineering: A, 2017, Volume 700, Page 530
B Aksoy, A Rehman, H Bayraktar, and B E Alaca
Journal of Micromechanics and Microengineering, 2017, Volume 27, Number 4, Page 045008

Comments (0)

Please log in or register to comment.
Log in