Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 23, Issue 3 (Sep 2016)

Issues

Comments on “A New Transient Attack on the Kish Key Distribution System”

Laszlo B. Kish
  • Corresponding author
  • Texas A&M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claes G. Granqvist
Published Online: 2016-07-14 | DOI: https://doi.org/10.1515/mms-2016-0039

Abstract

A recent IEEE Access Paper by Gunn, Allison and Abbott (GAA) proposed a new transient attack against the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. The attack is valid, but it is easy to build a defense for the KLJN system. Here we note that GAA’s paper contains several invalid statements regarding security measures and the continuity of functions in classical physics. These deficiencies are clarified in our present paper, wherein we also emphasize that a new version of the KLJN system is immune against all existing attacks, including the one by GAA.

Keywords: measurement theory; information security; foundations of physics; engineering over-simplifications

References

  • [1] Yuen, H. (2016). Security of quantum key distribution. IEEE Access, 4, 724-749.Google Scholar

  • [2] Makarov, V., Bourgoin, J.P., Chaiwongkhot, P., Gagne, M., Jennewein, T., Kaiser, S., Kashyap, R., Legre, M., Minshull, C., Sajeed, S. (2015). Laser damage creates backdoors in quantum communications. ArXiv, 1510.03148, (submitted for publication).Google Scholar

  • [3] Kish, L.B. (2006). Totally secure classical communication utilizing Johnson(-like) noise and Kirchoff’s law. Physics Letters A, 352, 178-182.Google Scholar

  • [4] Cho, A. (2005). Simple noise may stymie spies without quantum weirdness. Science, 309, 2148.Google Scholar

  • [5] Kish, L.B. (2006). Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)- noise cipher and expansion by voltage-based security. Fluctuation and Noise Letters, 6, L57-L63.Google Scholar

  • [6] Scheuer, J., Yariv, A. (2006). A classical key-distribution system based on Johnson (like) noise-how secure? Physics Letters A, 359, 737-740.Google Scholar

  • [7] Hao, F. (2006). Kish’s key exchange scheme is insecure. IEE Proceedings - Information Security, 153, 141-142.Google Scholar

  • [8] Liu, P.L. (2009). A new look at the classical key exchange system based on amplified Johnson noise. Physics Letters A, 373, 901-904.Web of ScienceGoogle Scholar

  • [9] Bennett, C.H., Riedel, C.J. (2013). On the security of key distribution based on Johnson-Nyquist noise. ArXiv, 1303.7435.Google Scholar

  • [10] Kish, L.B., Mingesz, R. (2006). Totally secure classical networks with multipoint telecloning (teleporation) of classical bits through loops with Johnson-like noise. Fluctuation and Noise Letters, 6, C9-C21.Google Scholar

  • [11] Mingesz, R., Gingl, Z., Kish, L.B. (2008). Johnson(-like) noise Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Physics Letters A, 372, 978-984.Web of ScienceGoogle Scholar

  • [12] Gunn, L.J., Allison, A., Abbott, D. (2014). A directional wave measurement attack against the Kish key distribution system. Scientific Reports, 4, 6461.Google Scholar

  • [13] Kish, L.B., Granqvist, C.G. (2014). Elimination of a second-law-attack, and all cable-resistance-based attacks, in the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. Entropy, 16, 5223-5231.Web of ScienceCrossrefGoogle Scholar

  • [14] Chen, H.P., Gonzalez, E., Saez, Y., Kish, L.B. (2015). Cable capacitance attack against the KLJN secure key exchange. Information, 6, 719-732.CrossrefGoogle Scholar

  • [15] Gunn, L.J., Allison, A., Abbott, D. (2015). A new transient attack on the Kish key distribution system. IEEE Access, 3, 1640-1648.Google Scholar

  • [16] Chen, H.P., Mohammad, M., Kish, L.B. (2016). Current injection attack against the KLJN secure key exchange, accepted for publication. Metrol. Meas. Syst., 23(2), 173−181.Google Scholar

  • [17] Kish, L.B. (2006). Response to Feng Hao’s paper “Kish’s key exchange scheme is insecure”. Fluctuation and Noise Letters, 6, C37-C41.Google Scholar

  • [18] Kish, L.B. (2006). Response to Scheuer-Yariv: “A classical key-distribution system based on Johnson (like) noise-how secure?” Physics Letters A, 359, 741-744.Google Scholar

  • [19] Kish, L.B., Scheuer, J. (2010). Noise in the wire: The real impact of wire resistance for the Johnson (-like) noise based secure communicator. Physics Letters A, 374, 2140-2144.Web of ScienceGoogle Scholar

  • [20] Kish, L.B., Abbott, D., Granqvist, C.G. (2013). Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-law-Johnson-noise scheme. PloS One, 8, e81810. Open access.Google Scholar

  • [21] Chen, H.P., Kish, L.B., Granqvist, C.G. (2014). On the “cracking” scheme in the paper “A directional coupler attack against the Kish key distribution system” by Gunn, Allison and Abbott. Metrol. Meas. Syst., 21(3), 389-400.Web of ScienceGoogle Scholar

  • [22] Kish, L.B., Gingl, Z., Mingesz, R., Vadai, G., Smulko, J., Granqvist, C.G. (2015). Analysis of an attenuator artifact in an experimental attack by Gunn-Allison-Abbott against the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. Fluctuation and Noise Letters, 14, 1550011.Web of ScienceGoogle Scholar

  • [23] Chen, H.P., Kish, L.B., Granqvist, C.G., Smulko J. (2015), Waves in a short cable at low frequencies, or just hand-waving? What does physics say? 23rd International Conference on Noise and Fluctuations (ICNF 2015), Xi’an, China, Jun. 2-5, 2015, DOI: 10.1109/ICNF.2015.7288604; ArXiv, 1505.02749.CrossrefGoogle Scholar

  • [24] Kish, L.B., Granqvist, C.G. (2014). On the security of the Kirchhoff-law-Johnson-noise (KLJN) communicator. Quantum Information Processing, 13, 2213−2219.CrossrefWeb of ScienceGoogle Scholar

  • [25] Mingesz, R. (2013). Experimental study of the Kirchhoff-law-Johnson-noise secure key exchange. International Journal of Modern Physics: Conference, 33, 1460365, DOI: 10.1142/S2010194 514603652.CrossrefGoogle Scholar

  • [26] Kish, L.B. (2013). Enhanced secure key exchange systems based on the Johnson-noise scheme. Metrol. Meas. Syst., 20(2), 191-204.Web of ScienceGoogle Scholar

  • [27] Smulko, J. (2014). Performance analysis of the “intelligent" Kirchhoff-law-Johnson-noise secure key exchange. Fluctuation and Noise Letters, 13, 1450024.Web of ScienceGoogle Scholar

  • [28] Liu, P.L. (2009). A key agreement protocol using band-limited random signals and feedback. Journal of Lightwave Technology, 27, 5230-5234.Web of ScienceCrossrefGoogle Scholar

  • [29] Kish, L.B., Horvath, T. (2009). Notes on recent approaches concerning the Kirchhoff-law-Johnson-noisebased secure key exchange. Physics Letters A, 373, 2858-2868.Web of ScienceGoogle Scholar

  • [30] Vadai, G., Mingesz, R., Gingl, Z. (2015). Generalized Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system using arbitrary resistors. Scientific Reports, 5, 13653.Web of ScienceGoogle Scholar

  • [31] Kish, L.B., Granqvist, C.G. (2016). Random-resistor-random-temperature KLJN key exchange. Metrol. Meas. Syst., 23(1), 3-11.Google Scholar

  • [32] Planck, M. (1949). Scientific Autobiography and Other Papers. New York: Philosophical Library.Google Scholar

  • [33] Horváth, T., Kish, L.B., Scheuer, J. (2011). Effective privacy amplification for secure classical communications. EPL (Europhysics Letters), 94, 28002.Google Scholar

  • [34] Maurer, U.M. (1993). Secret key agreement by public discussion from common information. IEEE Transaction on Information Theory, 39, 733-742.Google Scholar

  • [35] Wyner, A.D. (1975). The wire-tap channel. Bell Systems Technology Journal, 54, 1355-1387.Google Scholar

  • [36] Chorti, A., Poor, H.V. (2012). Achievable secrecy rates in physical layer secure systems with a helping interferer. International Conference on Computing, Networking and Communications (ICNC), Maui, Hawaii, 18-22, DOI: 10.1109/ICCNC.2012.6167408.CrossrefGoogle Scholar

  • [37] Shannon, C.E. (1949). Communication theory of secrecy systems. Bell Systems Technical Journal, 28, 656-715.Google Scholar

  • [38] Gilbert, G., Hamrick, M. (2002). Secrecy, computational loads and rates in practical quantum cryptography. Algorithmica, 34, 314-339.CrossrefGoogle Scholar

  • [39] Saez, Y., Kish, L.B. (2013). Errors and their mitigation at the Kirchhoff-law-Johnson-noise secure key exchange. PloS One, 8, e81103.Google Scholar

  • [40] Saez, Y., Kish, L.B., Mingesz, R., Gingl, Z., Granqvist, C.G. (2014). Bit errors in the Kirchhoff-law- Johnson-noise secure key exchange. International Journal of Modern Physics: Conference Series, 33, 1460367.Google Scholar

  • [41] Diffie, W., Hellman, M.E. (1976). New directions in cryptography. IEEE Transaction on Information Theory, 22, 644-654.Google Scholar

  • [42] Mayers, D. (2001). Unconditional security in quantum cryptography. Journal of the ACM, 48, 351-406.Google Scholar

  • [43] Landau, L.D., Lifshitz, E.M. (1969). Mechanics. Pergamon, Oxford.Google Scholar

  • [44] Landau, L.D., Lifshitz, E.M. (1971). The Classical Theory of Fields. Pergamon, Oxford. Google Scholar

  • [45] Landau, L.D., Lifshitz, E.M., Pitaevskiǐ, L.P. (1984). Electrodynamics of Continuous Media. Butterworth- Heinemann. Oxford.Google Scholar

  • [46] Landau, L.D., Lifshitz, E.M. (1980). Statistical Physics. Butterworth-Heinemann. Oxford.Google Scholar

  • [47] Lifshitz, E.M., Pitaevskiǐ, L.P. (1980). Statistical Physics, Part 2, Theory of the Condensed State. Butterworth-Heinemann. Oxford.Google Scholar

  • [48] Lifshitz, E.M., Pitaevskiǐ, L.P. (1981). Physical Kinetics. Pergamon, Oxford.Google Scholar

  • [49] Landau, L.D., Lifshitz, E.M. (1986). Theory of Elasticity. Butterworth-Heinemann. Oxford.Google Scholar

  • [50] Landau, L.D., Lifshitz, E.M. (1987). Fluid Mechanics. Butterworth-Heinemann, Oxford.Google Scholar

About the article

Received: 2016-04-19

Accepted: 2016-05-12

Published Online: 2016-07-14

Published in Print: 2016-09-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2016-0039.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in