Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 23, Issue 3 (Sep 2016)

Issues

Reliability of Pulse Measurements in Videoplethysmography

Jacek Rumiński
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-14 | DOI: https://doi.org/10.1515/mms-2016-0040

Abstract

Reliable, remote pulse rate measurement is potentially very important for medical diagnostics and screening. In this paper the Videoplethysmography was analyzed especially to verify the possible use of signals obtained for the YUV color model in order to estimate the pulse rate, to examine what is the best pulse estimation method for short video sequences and finally, to analyze how potential PPG-signals can be distinguished from other (e.g. background) signals. The presented methods were verified using data collected from 60 volunteers.

Keywords: videoplethysmography; vital signs measurements; video processing; image processing; smart glasses

References

  • [1] Humphreys, K., Markham, Ch., Ward, T.E. (2005). A CMOS camera-based system for clinical photoplethysmographic applications. Proc. SPIE, 5823, 88-95.Google Scholar

  • [2] Verkruysse, W., Svaasand, L.O., Nelson, J.S. (2008). Remote plethysmographic imaging using ambient light. Optics Express, 16(26), 21434-21445.CrossrefWeb of ScienceGoogle Scholar

  • [3] Poh, M.Z., McDuff, D.J., Picard, R.W. (2010). Non- contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 18,10762-10774.Web of ScienceCrossrefGoogle Scholar

  • [4] Christinaki, E., Giannakakis, G., Chiarugi, F., Pediaditis, M., Iatraki, G., Manousos, D., Marias, K., Tsiknakis, M. (2014). Comparison of blind source separation algorithms for optical heart rate monitoring. Proc. of Mobihealth Conference, 339−342.Google Scholar

  • [5] Mannapperuma, K., Holton, B.D., Lesniewski, P.J., Thomas, J.C. (2015). Performance limits of ICA-based heart rate identification techniques in imaging photoplethysmography. Physiol Meas., 36(1), 67−83.CrossrefWeb of ScienceGoogle Scholar

  • [6] Lewandowska, M., Ruminski, J., Kocejko, T., Nowak, J. (2011), Measuring pulse rate with a webcam − A non-contact method for evaluating cardiac activity. Proc. of FedCSIS Conference, IEEE Xplore, 405−410.Google Scholar

  • [7] Smart Glasses Portal. (2015). http://www.smartglassesnews.orgGoogle Scholar

  • [8] Evena Medical. (2014). http://evenamed.com/~even5672/products/glassesGoogle Scholar

  • [9] Ruminski, J., Bujnowski, A., Wtorek, J., Andrushevich, A., Biallas, M., Kistler, R. (2014). Interactions with recognized objects. Proc. of HSI 2014 Conference, IEEE Xplore, 101−105.Google Scholar

  • [10] Ruminski, J., Smiatacz, M., Bujnowski, A., Andrushevich, A., Biallas, M., Kistler, R. (2015). Interactions with recognized patients using smart glasses. Proc. of HSI 2015 Conference, IEEE Xplore, 187−194.Google Scholar

  • [11] Czuszynski, K., Ruminski, J. (2014). Interaction with medical data using QR-codes. Proc. of 7th HSI 2014 Conference, IEEE Xplore, 182−187.Google Scholar

  • [12] Kwasniewska, A., Klimiuk-Myszk, J., Ruminski, J., Forrier, J., Martin, B., Pecci, I. (2015). Quality of graphical markers for the needs of eyewear devices. Proc. of 8th HSI 2015 Conference, 388−395.Google Scholar

  • [13] Fuller, W.A. (1996). Introduction to Statistical Time Series. UK: John Wiley & Sons, Inc.Google Scholar

  • [14] Gävert, H., Hurri, J., Särelä, J., Hyvärinen, A. (2005). FastICA, http://research.ics.aalto.fi/ica/fastica/about.shtmlGoogle Scholar

  • [15] Cardoso, J.F. (2005). Jade 1.8, http://perso.telecom-paristech.fr/~cardoso/guidesepsou.htmlGoogle Scholar

  • [16] Bach, F. (2002). Kernel ICA 1.2, http://www.di.ens.fr/~fbach/kernel-ica/Google Scholar

  • [17] Learned-Miller, E.G. (2004). RADICAL 1.2, https://people.cs.umass.edu/~elm/ICA/Google Scholar

  • [18] Kay, S.M. (1988). Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

  • [19] Augustyniak, P. (2013). Coherence-based measure of instantaneous ECG noise. Computing in Cardiology Conference (CinC), 787−790.Google Scholar

  • [20] Clifford, G.D. (2006). ECG statistics, noise, artefacts and missing data. Chapter 3 in: Clifford G.D., Azuaje, F., McSharry, P.E. Advanced Methods and Tools for ECG Analysis, Artech House Publishing.Google Scholar

  • [21] Sörnmo, L., Laguna, P. (2005). Bioelectrical Signal Processing in Cardiac and Neurological Applications. Academic Press.Google Scholar

  • [22] Lopez, S. (2012). Pulse Oximeter Fundamentals and Design, Freescale Semiconductor, Application Note, Document Number: AN4327 Rev. 2.Google Scholar

  • [23] Iyriboz, Y., Powers, S., Morrow, J., Ayers, D., Landry G. (1991). Accuracy of pulse oximeters in estimating heart rate at rest and during exercise. British Journal of Sports Medicine, 25(3), 162−164.CrossrefGoogle Scholar

  • [24] Oh, S.H., Lee, Y.R., Kim, H.N. (2014). A Novel EEG Feature Extraction Method Using Hjorth Parameter. International Journal of Electronics and Electrical Engineering, 2(2), 106−110.CrossrefGoogle Scholar

  • [25] Deshmane, A.V. (2009). False arrhythmia alarm suppression using ECG, ABP, and photoplethysmogram. MS Thesis, MIT, USA.Google Scholar

  • [26] Xin, L., Yongfeng, R., Chengqun, C., Wei, W.F. (2015). Accurate Frequency Estimation Based On Three- Parameter Sine-Fitting With Three FFT Samples. Metrol. Meas. Syst., 22(3), 403-416.Google Scholar

  • [27] Smieszek, M., Dobrzanska, M. (2015). Application Of Kalman Filter In Navigation Process Of Automated Guided Vehicles. Metrol. Meas. Syst., 22(3), 443-454.Web of ScienceGoogle Scholar

  • [28] Wuerz, R.C., Travers, D., Gilboy, N., Eitel, D.R., Rosenau, A., Yazhari, R. (2001). Implementation and refinement of the emergency severity index. Acad. Emerg. Med., 8(2), 170-176.Google Scholar

About the article

Received: 2016-02-19

Accepted: 2016-05-24

Published Online: 2016-07-14

Published in Print: 2016-09-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2016-0040.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in