Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 23, Issue 4 (Dec 2016)

Issues

Current Fluctuation Measurements of Amperometric Gas Sensors Constructed with Three Different Technology Procedures

Petr Sedlak
  • Corresponding author
  • Brno University of Technology, Faculty of Electrical Engineering and Communications, Technicka 8, Brno 616 00, Czechia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Kubersky / Pavel Skarvada
  • Brno University of Technology, Faculty of Electrical Engineering and Communications, Technicka 8, Brno 616 00, Czechia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ales Hamacek / Vlasta Sedlakova
  • Brno University of Technology, Faculty of Electrical Engineering and Communications, Technicka 8, Brno 616 00, Czechia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiri Majzner
  • Brno University of Technology, Faculty of Electrical Engineering and Communications, Technicka 8, Brno 616 00, Czechia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanislav Nespurek / Josef Sikula
  • Brno University of Technology, Faculty of Electrical Engineering and Communications, Technicka 8, Brno 616 00, Czechia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-13 | DOI: https://doi.org/10.1515/mms-2016-0042

Abstract

Electrochemical amperometric gas sensors represent a well-established and versatile type of devices with unique features: good sensitivity and stability, short response/recovery times, and low power consumption. These sensors operate at room temperature, and therefore have been applied in monitoring air pollutants and detection of toxic and hazardous gases in a number of areas. Some drawbacks of classical electrochemical sensors are overcome by the solid polymer electrolyte (SPE) based on ionic liquids. This work presents evaluation of an SPE-based amperometric sensor from the point of view of current fluctuations. The sensor is based on a novel three-electrode sensor platform with solid polymer electrolytes containing ionic liquid for detection of nitrogen dioxide − a highly toxic gas that is harmful to the environment and presenting a possible threat to human health even at low concentrations. The paper focuses on using noise measurement (electric current fluctuation measurement) for evaluation of electrochemical sensors which were constructed by different fabrication processes: (i) lift-off and drop-casting technology, (ii) screen printing technology on a ceramic substrate and (iii) screen printing on a flexible substrate.

Keywords: current fluctuations; noise measurement; amperometric sensor; solid polymer electrolyte

References

  • [1] Xiong, L., Compton, R.G. (2014). Amperometric Gas detection: A Review, Int. J. Electrochem. Sci., 9, 7152-81.Google Scholar

  • [2] Janata, J. (2009). Principles of Chemical Sensors. Boston, MA: Springer US.Google Scholar

  • [3] Stetter, J.R., Li, J. (2008). Amperometric gas sensors a review. Chem. Rev., 108, 352-66.Web of ScienceCrossrefGoogle Scholar

  • [4] Buzzeo, M.C., Hardacre, C., Compton, R.G. (2004) Use of Room Temperature Ionic Liquids in Gas Sensor. Design Anal. Chem., 76, 4583-8.Google Scholar

  • [5] Silvester, D. S. (2011). Recent advances in the use of ionic liquids for electrochemical sensing. Analyst, 136, 4871-82.Web of ScienceGoogle Scholar

  • [6] Kubersky, P., Sedlak, P., Hamaček, A., Nešpůrek, S., Kuparowitz, T., Šikulam J., Majzner, J., Sedlakova, V., Grmela, L., Syrovy, T. (2015). Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys., 456, 111-7.Web of ScienceGoogle Scholar

  • [7] Toniolo, R., Dossi, N., Pizzariello, A., Doherty, A.P., Bontempelli, G. (2012). A Membrane Free Amperometric Gas Sensor Based on Room Temperature Ionic Liquids for the Selective Monitoring of NOx Electroanalysis. 24, 865-71.Google Scholar

  • [8] Kubersky, P., Hamaček, A., Nešpůrek, S., Soukup, R., Vik, R. (2013). Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem., 187, 546-52.Web of ScienceGoogle Scholar

  • [9] Kubersky, P., Syrovy, T., Hamaček, A., Nešpůrek, S., Syrova, L. (2015). Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem., 209, 1084-90.Web of ScienceGoogle Scholar

  • [10] Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 8, 621-9.CrossrefWeb of ScienceGoogle Scholar

  • [11] Rogers, E.I., O’Mahony, A.M., Aldous, L., Compton, R.G. (2010). Amperometric Gas Detection Using Room Temperature Ionic Liquid Solvents. ECS Trans., 33, 473-502.CrossrefGoogle Scholar

  • [12] Singh, P.S., Chan, H.S.M., Kang, S., Lemay, S.G. (2011). Stochastic Amperometric Fluctuations as a Probe for Dynamic Adsorption in Nanofluidic. Electrochemical Systems J. Am. Chem. Soc., 133, 18289-95.Web of ScienceGoogle Scholar

  • [13] Rehman, A., Zeng, X. (2012). Ionic liquids as green solvents and electrolytes for robust chemical sensor development. Acc. Chem. Res., 45, 1667-77.Google Scholar

  • [14] Vandamme, L.K.J. (1994). Noise as a diagnostic tool for quality and reliability of electronic devices. Electron Devices IEEE Trans. On, 41, 2176-87.Google Scholar

  • [15] Sedlakova, V., Majzner, J., Sedlak, P., Kopecky, M., Sikula, J., Zarnik, M.S., Belavic, D., Hrovat, M. (2012). Evaluation of piezoresistive ceramic pressure sensors using noise measurements. Inf. MIDEM, 42, 109-14.Google Scholar

  • [16] Zarnik, M.S., Sedlakova, V., Belavic, D., Sikula, J., Majzner, J., Sedlak, P. (2013). Estimation of the longterm stability of piezoresistive LTCC pressure sensors by means of low-frequency noise measurements. Sens. Actuators Phys., 199, 334-43.Google Scholar

  • [17] Santo Zarnik, M., Belavic, D., Sedlakova, V., Sikula, J., Kopecky, M., Sedlak, P., Majzner, J. (2013) Comparison of the Intrinsic Characteristics of LTCC and Silicon Pressure Sensors by Means of 1/f Noise. Measurements Radioengineering, 22, 227-32.Google Scholar

  • [18] Contaret, T., Seguin, J.L., Aguir, K., Menini, P. (2013). Adsorption-desorption noise as a selective detection tool for metal-oxide gas microsensors. 22nd International Conference on Noise and Fluctuations, 1-4.Google Scholar

  • [19] Schmera, G., Kish, L.B., (2002). Fluctuation-enhanced gas sensing by surface acoustic wave devices. Fluct. Noise Lett., 02, L117-23.Google Scholar

  • [20] Kish, L.B., Li, Y., Solis, J.L., Marlow, W.H., Vajtai, R., Granqvist, C.G., Lantto, V., Smulko, J.M., Schmera, G. (2005). Detecting harmful gases using fluctuation-enhanced sensing with Taguchi sensors. IEEE Sens. J., 5, 671-6.CrossrefGoogle Scholar

  • [21] Ayhan, B., Kwan, C., Zhou, J., Kish, L.B., Benkstein, K.D., Rogers, P.H., Semancik, S. (2013). Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification. Sens. Actuators B Chem., 188, 651-60.Web of ScienceGoogle Scholar

  • [22] Macku, R., Smulko, J., Koktavy, P., Trawka, M., Sedlak, P. (2015). Analytical fluctuation enhanced sensing by resistive gas sensors. Sens. Actuators B Chem., 213, 390-6.Web of ScienceGoogle Scholar

  • [23] Smulko, J.M., Ederth, J., Li, Y., Kish, L.B., Kennedy, M.K., Kruis, F.E. (2005). Gas sensing by thermoelectric voltage fluctuations in SnO2 nanoparticle films. Sens. Actuators B Chem., 106, 708-12.Google Scholar

  • [24] Contaret, T., Seguin, J., Aguir, K. (2011). Physical-based characterization of low frequency responses in metal-oxide gas sensors 2011. IEEE Sensors 2011 IEEE Sensors. 141-4.Google Scholar

  • [25] Sedlak, P., Sikula, J., Majzner, J., Vrnata, M., Fitl, P., Kopecky, D., Vyslouzil, F., Handel, P.H. (2012) Adsorption-desorption noise in QCM gas sensors. Sens. Actuators B Chem., 166-167, 264-8.Web of ScienceGoogle Scholar

  • [26] Djurić, Z., Jakšić, O., Randjelović, D. (2002). Adsorption-desorption noise in micromechanical resonant structures. Sens. Actuators Phys., 96, 244-51.CrossrefGoogle Scholar

  • [27] Ahmadi, M.M., Jullien, G.A. (2009). Current-Mirror-Based Potentiostats for Three-Electrode Amperometric. Electrochemical Sensors IEEE Trans. Circuits Syst. Regul. Pap., 56, 1339-48.Google Scholar

  • [28] Bronzino, J.D. (1999). Biomedical Engineering Handbook. CRC Press.Google Scholar

  • [29] Prasek, J., Trnkova, L., Gablech, I., Businova, P., Drbohlavova, J., Chomoucka, J., Adam, V., Kizek, R., Hubalek, J. (2012). Optimization of planar three-electrode systems for redox system detection. Int. J. Electrochem. Sci., 7, 1785-801.Google Scholar

  • [30] Sedlak, P., Sikula, J., Sedlakova, V., Chvatal, M., Majzner, J., Vondra, M., Kubersky, P., Nespurek, S., Hamacek, A. (2013). Noise in amperometric NO2 sensor. 22nd International Conference on Noise and Fluctuations (ICNF) 2013 22nd International Conference on Noise and Fluctuations (ICNF), 1-4.Google Scholar

  • [31] Sedlak, P., Kubersky, P., Nespurek, S., Majzner, J., Macku, R., Skarvada, P., Sedlakova, V., Hamacek, A., Sikula, J. (2015). Investigation of adsorption-desorption phenomenon by using current fluctuations of amperometric NO2 gas sensor. 23nd International Conference on Noise and Fluctuations ICNF. 22nd International Conference on Noise and Fluctuations ICNF, Xian, China, IEEE, 1-4.Google Scholar

  • [32] Kubersky, P., Altšmid, J., Hamaček, A., Nešpůrek, S., Zmeškal, O. (2015). An Electrochemical NO2 Sensor Based on Ionic Liquid. Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity Sensors, 15(11), 28421−28434. Google Scholar

  • [33] Hassibi, A., Navid, R., Dutton, R.W., Lee, T.H. (2004). Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys., 96, 1074-82.CrossrefGoogle Scholar

  • [34] Kuo, C.K., Brophy, J.J. (1988). A Review of Noise Studies in Superionic Electrolytes. DTIC Document.Google Scholar

  • [35] Punter, J., Colomer-Farrarons, J., Ll, P. (2013). Bioelectronics for Amperometric Biosensors State of the Art in Biosensors − General Aspects. Rinken, T. (ed). InTech.Google Scholar

  • [36] Sohn, K.S., Oh, S.J., Kim, E.J., Gim, J.M., Kim, N.S., Kim, Y.S., Kim, J.W. (2013) A Unified Potentiostat for Electrochemical Glucose Sensors. Trans. Electr. Electron. Mater., 14, 273-7.CrossrefGoogle Scholar

  • [37] Sedlakova, V., Sikula, J., Chvatal, M., Pavelka, J., Tacano, M., Toita, M. (2012). Noise in Submicron Metal- Oxide-Semiconductor Field Effect Transistors: Lateral Electron Density Distribution and Active Trap Position. Jpn. J. Appl. Phys., 51, 024105.Web of ScienceGoogle Scholar

  • [38] Katelhon, E., Krause, K.J., Mathwig, K., Lemay, S.G., Wolfrum, B. (2014). Noise Phenomena Caused by Reversible Adsorption in Nanoscale Electrochemical Devices ACS Nano, 8, 4924-30.Google Scholar

  • [39] Smulko, J., Darowicki, K., Wysocki, P. (1998). Digital measurement system for electrochemical noise. Polish Journal of Chemistry, 72(7), 1237−1241.Google Scholar

  • [40] Nadherna, M., Opekar, F., Reiter, J., Štulik, K. (2012). A planar, solid-state amperometric sensor for nitrogen dioxide, employing an ionic liquid electrolyte contained in a polymeric matrix. Sens. Actuators B Chem., 161, 811-7. Web of ScienceGoogle Scholar

About the article

Received: 2015-12-22

Accepted: 2016-05-05

Published Online: 2016-12-13

Published in Print: 2016-12-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2016-0042.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in