Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 23, Issue 4 (Dec 2016)

Problems in Modelling Charge Output Accelerometers

Krzysztof Tomczyk
  • Cracow University of Technology, Faculty of Electrical and Computer Engineering, Warszawska 24, 31-155 Kraków, Poland
  • Email:
Published Online: 2016-12-13 | DOI: https://doi.org/10.1515/mms-2016-0045

Abstract

The paper presents major issues associated with the problem of modelling change output accelerometers. The presented solutions are based on the weighted least squares (WLS) method using transformation of the complex frequency response of the sensors. The main assumptions of the WLS method and a mathematical model of charge output accelerometers are presented in first two sections of this paper. In the next sections applying the WLS method to estimation of the accelerometer model parameters is discussed and the associated uncertainties are determined. Finally, the results of modelling a PCB357B73 charge output accelerometer are analysed in the last section of this paper. All calculations were executed using the MathCad software program. The main stages of these calculations are presented in Appendices A−E.

Keywords: weighted least square method; charge output accelerometer; mathematical modelling; parameter estmation

References

  • [1] Yu, J.Ch., Lan, Ch.B. (1999). System Modeling and Robust Design of Microaccelerometer using Piezoelectric Thin Film. Proc. of the IEEE Int. Conf. on MFI for Intell. Syst., 99-104.Google Scholar

  • [2] Levy, E.C. (1959). Complex-Curve Fitting. IEEE T. Automat. Contr., AC-4, 37-44.Google Scholar

  • [3] Sanathanan, C.K., Koerner, J. (1963). Transfer Function Synthesis as a Ratio of Two Complex Polynomials. IEEE T. Automat. Contr., AC-9, 56-58.CrossrefGoogle Scholar

  • [4] Strobel, H. (1966). On a New Method of Determining the Transfer Function by Simultaneous Evaluation of the Real and Imaginary Parts of the Measured Frequency Response, 3-rd IFAC Symposium. London.Google Scholar

  • [5] Gyurki, J. (1970). Some Questions of Identification on the basis of Frequency Response. Acta Tech. Hung., 68, 145-160.Google Scholar

  • [6] Payne, P.A. (1970). An Improved Technique for Transfer Function Synthesis from Frequence Response Data. IEEE T. Automat. Contr., 14, 480-483.CrossrefGoogle Scholar

  • [7] t’Mannetje, J.J. (1973). Transfer-Function Identification using a Complex Curve-Fitting Technique. J. Mech. Eng. Sci., 15, 339-345.CrossrefGoogle Scholar

  • [8] Stahl, H. (1984). Transfer Function Synthesis using Frequency Response Data. Int. J. Control, 39, 541-550.CrossrefGoogle Scholar

  • [9] Whitfield, A.H. (1987). Asymptotic Behavior of Transfer Function Synthesis Methods. Int. J. Control, 1083-1092.CrossrefGoogle Scholar

  • [10] Glob, G.H., Van Loan, C.F. (1980). An Analysis of the Total Least Squares Problem. SIAM J. Numer. Anal., 17, 883-893.CrossrefGoogle Scholar

  • [11] Pintelon, R., Schoukens, J. (2001). System Identification: A Frequency Domain Approach. IEEE Press, Piscataway, New York.Google Scholar

  • [12] JCGM 101 (2008). Evaluation of Measurement Data - Supplement 1 to the Guide to the Expression of Uncertainty in Measurement - Propagation of Distributions using a Monte Carlo Method.Google Scholar

  • [13] Soysal, A.O., Semlyen, A. (1993). Practical Transfer Function Estimation and its Application to Wide Frequency Range Representation of Transformers. IEEE T. Power Deliver., 8, 1627-1637.CrossrefGoogle Scholar

  • [14] Janiszowski, K.B. (2014). Approximation of a Linear Dynamic Process Model using the Frequency Approach and a Nonquadratic Measure of the Model Error. Int. J. Appl. Math. Comput. Sci., 24, 99-109.CrossrefGoogle Scholar

  • [15] Link, A., Tabner, A., Wabinski, W., Bruns, T., Elster, C. (2007). Modelling Accelerometers for Transient Signals using Calibration Measurement upon Sinusoidal Excitation. Measurement, 40, 928-935.CrossrefGoogle Scholar

  • [16] Tomczyk, K., Sieja, M. (2006). Acceleration transducers calibration based on maximum dynamic error. Technical Trans., 3E, 37-49.Google Scholar

  • [17] Layer, E., Tomczyk, K. (2010). Measurements. Modelling and Simulation of Dynamic Systems. Springer- Verlag, Berlin Heidelberg.Google Scholar

  • [18] Tomczyk, K., Layer, E. (2015). Accelerometer Errors in Measurements of Dynamic Signals. Measurement, 60, 292-298.CrossrefGoogle Scholar

  • [19] JCGM 100 (2008). Evaluation of measurement data - Guide to the Expression of Uncertainty in Measurement.Google Scholar

  • [20] Magain, P., Courbin, F., Sohy, S. (1988). Deconvolution with Correct Sampling. The Astrophys. J., 494, 472-477.Google Scholar

  • [21] Morawski, R., Szczecinski, L., Barwicz, A. (1995). Deconvolution algorithms for instrumental applications: A comparative study. Journal of Chemometr., 9(1), 3-20.Google Scholar

About the article

Received: 2015-10-25

Accepted: 2016-05-30

Published Online: 2016-12-13

Published in Print: 2016-12-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2016-0045.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in