Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
See all formats and pricing
More options …
Volume 23, Issue 4


Estimating the Approximation Uncertainty for Digital Materials Subjected to Stress Relaxation Tests

Stanisław Adamczak
  • Corresponding author
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Bochnia
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-13 | DOI: https://doi.org/10.1515/mms-2016-0048


The main aim of the study was to determine the goodness of fit between the relaxation function described with a rheological model and the real (experimental) relaxation curves obtained for digital materials fabricated with a Connex 350 printer using the PolyJet additive manufacturing technology. The study involved estimating the uncertainty of approximation of the parameters of the theoretical relaxation curve. The knowledge of digital materials is not yet sufficient; their properties are not so well-known as those of metallic alloys or plastics used as structural materials. Intensive research is thus required to find out more about their behavior in various conditions. From the calculation results, i.e. the uncertainty of approximation of the relaxation function parameters, it is evident that the experimental curves coincide with the curves obtained by means of the solid model when the approximation uncertainty is taken into account. This suggests that the assumed solid model is well-suited to describe a real material.

Keywords: digital materials; stress relaxation; approximation uncertainty


  • [1] Adamczak, St., Bochnia, J., Kaczmarska, B. (2015). An analysis of tensile test results to assess the innovation risk for an additive manufacturing technology. Metrol. Meas. Syst., 22(1), 127-138.Web of ScienceCrossrefGoogle Scholar

  • [2] Adamczak, S., Bochnia, J., Kaczmarska, B. (2014). Estimating the uncertainty of tensile strength measurement for a photocured material produced by additive manufacturing, 21(3), 553-560.Web of ScienceGoogle Scholar

  • [3] Chockalingam, K., Jawahar, N., Chandrasekhar, U. (2006). Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyping Journal, 12(2), 106-113.CrossrefGoogle Scholar

  • [4] Ahn, S.-H., Montero, M., Odell, D., Roundy, S., Wright, P.K. (2002). Anisotropic Material Properties of Fused Deposition Modeling ABS. Rapid Prototyping, 8(4), 248−257.CrossrefGoogle Scholar

  • [5] Raut, S., Jatti, V.S., Khedkar, N.K., Singh, T.P. (2014). Investigation of the Effect of Built Orientation on Mechanical Properties and Total Cost of FDM Parts. Procedia Materials Science, Elsevier B.V., 6 No. Icmpc, 1625-1630.CrossrefGoogle Scholar

  • [6] Lee, C.S., Kim, S.G., Kim, H.J., Ahn, S.H. (2007). Measurement of anisotropic compressive strength of rapid prototyping parts. Journal of Materials Processing Technology, 187−188, 627−630.Google Scholar

  • [7] Fernandes, V.A., De Focatiis, D.S.A. (2014). The role of deformation history on stress relaxation and stress memory of filled rubber. Polymer Testing, 40, 124−132.Web of ScienceGoogle Scholar

  • [8] Chivers, R.A., Bonner, M.J., Hine, P.J., Ward, I.M. (2014). Shape memory and stress relaxation behaviour of oriented mono-dispersed polystyrene. Polymer, 55, 1055−1060.Web of ScienceGoogle Scholar

  • [9] Luheng Wang, L., Han, Y. (2013). Compressive relaxation of the stress and resistance for carbon nanotube filled silicone rubber composite. Composites Part A, 47, 63-71.Google Scholar

  • [10] Stan, F., Fetecau, C. (2013). Study of stress relaxation in polytetrafluoroethylene composites by cylindrical macroindentation. Composites Part B, 47, 298-307.Google Scholar

  • [11] Hernandez-Jimenez, A., Hernandez-Santiago, J., Macias-Garcia, A., Sanchez-Gonzalez, J. (2002). Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polymer Testing, 21, 325-331.Google Scholar

  • [12] Colucci, D.M., O’Connell, P.A., McKenna, G.B. (1997). Stress relaxation experiments in polycarbonate: a comparison of volume changes for two commercial grades. Polym. Eng. Sci., 37(9), 1469-1474.CrossrefGoogle Scholar

  • [13] Bąkowski, A., Radziszewski, L. (2015). Determining selected diesel engine combustion descriptors based on the analysis of the coefficient of variation of in-chamber pressure. Bulletin of the Polish Academy of Sciences technical sciences, 62(2), 457−464.Google Scholar

  • [14] Kisała, P. (2012). Metrological conditions of strain measurement optoelectronic method by the use of fibre bragg gratings. Metrol. Meas. Syst., 19(3), 471−480.Google Scholar

  • [15] Sładek, J., Gąska, A., Olszewska, M., Kupiec, R., Krawczyk, M. (2013). Virtual Coordinate Measuring Machine butli Rusing Laser Tracer system and spherical standard. Metrol. Meas. Syst., 20(1), 77−86.CrossrefGoogle Scholar

  • [16] Krawczyk, M., Gąska, A., Sładek J. (2015). Determination of the uncertainty of the measurements performer by coordinate measuring machines. Technisches Messen, 82(6), 329−338.CrossrefGoogle Scholar

  • [17] Błasiak, S., Kundera, Cz., Bochnia, J. (2011). A Numerical Analysis of the Temperature Distributions in Face Sealing Rings. Procedia Engineering, 39, 366-378.Google Scholar

  • [18] Stępien, K., Janecki, D., Adamczak, S. (2011). Investigating the influence of selected factors on results of Vblock cylindricity measurements. Measurement, 44(4), 767-777.CrossrefGoogle Scholar

  • [19] Inspekt Mini (2011). Universal testing machine Inspekt mini 3kN, Hegewald & Peschke MPT GmbH.Google Scholar

  • [20] LabMaster software (2011). Version Scholar

  • [21] Del Nobile, M.A., Chillo, S., Mentana, A., Baiano, A. (2007). Use of the generalized Maxwell model for describing the stress relaxation behavior of solid-like foods. Journal of Food Engineering, 78, 978-983.Web of ScienceGoogle Scholar

  • [22] Kai-Xin, H., Ke-Qin, Z. (2011). A note on fractional Maxwell model for PMMA and PTFE. Polymer Testing, 30, 797-799.Web of ScienceGoogle Scholar

  • [23] Tingting, H., Hongshan, C. (2012). Isothermal physical aging of PEEK and PPS investigated by fractional Maxwell model. Polymer, 53, 2509−2518. Web of ScienceGoogle Scholar

About the article

Received: 2016-02-10

Accepted: 2016-06-15

Published Online: 2016-12-13

Published in Print: 2016-12-01

Citation Information: Metrology and Measurement Systems, Volume 23, Issue 4, Pages 545–553, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2016-0048.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in