Jump to ContentJump to Main Navigation
Show Summary Details

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR increased in 2015: 1.140

SCImago Journal Rank (SJR) 2015: 0.554
Source Normalized Impact per Paper (SNIP) 2015: 1.363
Impact per Publication (IPP) 2015: 1.260

Open Access
See all formats and pricing

Survey of Energy Harvesting Systems for Wireless Sensor Networks in Environmental Monitoring

Bogdan Dziadak
  • Corresponding author
  • Warsaw University of Technology, Faculty of Electrical Engineering, Koszykowa 75, 00-661 Warsaw, Poland
  • Email:
/ Łukasz Makowski
  • Warsaw University of Technology, Faculty of Electrical Engineering, Koszykowa 75, 00-661 Warsaw, Poland
  • Email:
/ Andrzej Michalski
  • Warsaw University of Technology, Faculty of Electrical Engineering, Koszykowa 75, 00-661 Warsaw, Poland Poland
  • Military University of Technology, Institute of Electronic Systems Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Email:
Published Online: 2016-12-13 | DOI: https://doi.org/10.1515/mms-2016-0053


Wireless Sensor Networks (WSNs) have existed for many years and had assimilated many interesting innovations. Advances in electronics, radio transceivers, processes of IC manufacturing and development of algorithms for operation of such networks now enable creating energy-efficient devices that provide practical levels of performance and a sufficient number of features. Environmental monitoring is one of the areas in which WSNs can be successfully used. At the same time this is a field where devices must either bring their own power reservoir, such as a battery, or scavenge energy locally from some natural phenomena. Improving the efficiency of energy harvesting methods reduces complexity of WSN structures. This survey is based on practical examples from the real world and provides an overview of state-of-the-art methods and techniques that are used to create energyefficient WSNs with energy harvesting.

Keywords: environmental monitoring; wireless sensor networks; energy harvesting


  • [1] Pallikonda Rajasekaran, M., Radhakrishnan, S., Subbaraj, P. (2010). Sensor grid applications in patient monitoring. Future Generation Computer Systems, 26(4), 569−575.

  • [2] Sung, W.T., Chang, K.Y. (2014). Health parameter monitoring via a novel wireless system. Applied Soft Computin, 22, 667−680.

  • [3] Bhuiyan, M.Z.A., Wang, G., Cao, J., Wu, J. (2015). Deploying Wireless Sensor Networks with Fault- Tolerance for Structural Health Monitoring. IEEE Transactions on Computers, 64(2), 382-395. [Crossref]

  • [4] Sheng, Z., Mahapatra, C., Zhu, C, Leung, V.C.M. (2015). Recent Advances in Industrial Wireless Sensor Networks Toward Efficient Management in IoT. IEEE Access, 3,622-637.

  • [5] Barac, F., Gidlund, M., Zhang, T. (2014). Scrutinizing Bit- and Symbol-Errors of IEEE 802.15.4 Communication in Industrial Environments. IEEE Transactions on Instrumentation and Measurement, 63(7), 1783-1794.

  • [6] Munoz-Gea, J.P., Manzanares-Lopez, P., Malgosa-Sanahuja, J., Garcia-Haro, J. (2013). Design and implementation of a P2P communication infrastructure for WSN-based vehicular traffic control applications. Journal of Systems Architecture, 59(10) Part B, 923−930. [Crossref]

  • [7] Markevicius, V., Navikas, D., Zilys, M., Andriukaitis, D., Valinevicius, A., Cepenas, M. (2016). Dynamic Vehicle Detection via the Use of Magnetic Field Sensors. Sensors, 16(1), 78. [Crossref]

  • [8] Winkler, M., Tuchs, K. D., Hughes, K., Barclay, G. (2008). Theoretical and practical aspects of military wireless sensor networks. Journal of Telecommunications and Information Technology, 2, 37−45.

  • [9] Prima, S., Inman, D. (2009). Energy Harvesting Technologies. New York: Springer 2009.

  • [10] Mitcheson, P., Yeatman, E., Kondala Rao, G., Holms, A., Green, T. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proc. of the IEEE, 96(9), 1457-1486. [Crossref]

  • [11] Lee, C., Lim, Y.M., Yang, B., at el. (2009). Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect. Sensors and Actuators A Physical, 156(1), 208-216.

  • [12] Loreto, M., Moll, F. (2015). Review of Energy Harvesting Techniques and Applications for Microelectronics, Drayson Technologies.

  • [13] Wan, Z.G., Tan, Y.K., Yuen, C. (2011). Review on energy harvesting and energy management for sustainable wireless sensor networks. Proc. of the IEEE International Conference on Communication Technology (ICCT'11), 317-362.

  • [14] Tan, Y.K., Panda, S.K. (2011). Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instrumentation and Measurement, 60(4), 1367-1377. [Crossref]

  • [15] Tuna, G., Gungor, V.C. (2016). Ch2 − Energy harvesting and battery technologies for powering wireless sensor networks. Industrial Wireless Sensor Networks, 25-38.

  • [16] Boisseau, S., Despesse, G., Seddik, B.A. (2012). Ch5. Electrostatic Conversion for Vibration Energy Harvesting. Small-Scale Energy Harvesting, Intech.

  • [17] Ren, X., Zelenay, P., Thomas, S., Davey, J., Gottesfeld, S. (2000). Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources, 86, 111-116. [Crossref]

  • [18] Gurau, B., Smotkin, E.S. (2002). Methanol crossover in direct methanol fuel cells: a link between power and energy density. Journal of Power Sources, 112, 339-352. [Crossref]

  • [19] Application Notes and FAQ, http://www.optixtal.com/applicationnotes.htm (Mar. 2016).

  • [20] The High-power Lithium-ion, http://batteryuniversity.com/learn/article/the_high_power_lithium_ion (Mar. 2016).

  • [21] Bhatnagar, V., Owende, P. (2015). Energy Harvesting for assistive and mobile applications. Energy Science & Engineering, 3(3), 153-217. [Crossref]

  • [22] Calio, R., Bhaskar Rongala, U., Camboni, D., Milazzo, M., Stefanini, C., De Petris, G., Oddo, C.M. ( March 2014). Piezoelectric Energy harvesting Solutions. Sensors, 14(3), 4755 - 4790. [Crossref]

  • [23] Soo Kim, H., Kim, J., (2011). A review of Pizoelectric Energy Harvesting based on Vibration. International Journal of Precision Engineering and Manufacturing, 12(6), 1129-1141.

  • [24] Sheu, G.J., Yang, S.M., Lee, T. (2011). Development of a low frequency electrostatic comb-drive energy harvester compatiblie to SoC design by CMOS process. Sensors and Actuators A Physical, 1667(11),70-76.

  • [25] Vullers, R.J.M., Van Schaijk, R., Doms, I., Van Hoof, C., Mertens, R. (2009). Micropawer energy harvesting. Solid-State Electronics, 53, 684-693.

  • [26] Chong, C.Y., Kumar, S.P. (2003). Sensor networks: evolution, opportunities, and challenges. Proc. of the IEEE, 91(8), 1247-1256. [Crossref]

  • [27] Swanson, D.C., Hall, D.L. (1994). Real-time data fusion processing of internetted acoustic sensors for tactical applications. Multisensor Fusion and Integration for Intelligent Systems. IEEE International Conference on MFI '94, 443−446.

  • [28] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E. (2020). A survey on sensor networks. IEEE Communications Magazine, 40(8),102-114. [Crossref]

  • [29] Yick, J., Mukherjee, B., Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292-2330. [Crossref]

  • [30] Dziadak, B., Makowski, L., Michalski, A. (2011). Embedding wireless water monitoring system in Internet. Przeglad Elektrotechniczny, 87(4), 246−248.

  • [31] Calhoun, B.H., Daly, D.C., Verma, N., Finchelstein, D.F., Wentzloff, D.D., Wang, A., Cho, S., Chandrakasan, A.P. (2005). Design considerations for ultra-low energy wireless microsensor nodes. IEEE Transactions on Computers, 54(6),727-740. [Crossref]

  • [32] Hill, J.L. Culler, D.E. (2002). Mica: a wireless platform for deeply embedded networks. IEEE Micro, 22(6), 12-24. [Crossref]

  • [33] Pham, C. (2014). Communication performances of IEEE 802.15.4 wireless sensor motes for data-intensive applications: A comparison of WaspMote, Arduino MEGA, TelosB, MicaZ and iMote2 for image surveillance. Journal of Network and Computer Applications, 46, 48-59.

  • [34] IEEE Standard for Information technology − Local and metropolitan area networks − Specific requirements − Part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Wireless Personal Area Networks (WPAN). IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), 2005, 1−700.

  • [35] IEEE Standard for Local and metropolitan area networks − Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), 2011, 1−314.

  • [36] Chu, H., Xie, Z., Shao, Y., Liu, Q., Mi, Z. (2010). Design and implement of WSN based on Bluetooth and embedded system. 2010 International Conference on Computer Application and System Modeling (ICCASM), 5,V5-641-V5-644.

  • [37] Yu, C., Cui, Y., Zhang, L., Yang, S. (2009). ZigBee Wireless Sensor Network in Environmental Monitoring Applications. 5th International Conference on Wireless Communications, Networking and Mobile Computing, WiCom, 1-5.

  • [38] Buevich, M., Rajagopal, N., Rowe, A. (2013). Hardware Assisted Clock Synchronization for Real-Time Sensor Networks. Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, 268-277.

  • [39] Park, C., Liu, J., Chou, P.H. (2005). Eco: an Ultra-Compact Low-Power Wireless Sensor Node for Real-Time Motion Monitoring. Proc. of The Fourth International Conference on Information Processing in Sensor Networks, 398−403.

  • [40] Webster, J.G., Eren, H. (2014). Measurement, Instrumentation, and Sensors Handbook, Second Edition. CRC Press.

  • [41] Adamkiewicz, Ł., Badyda, A.J., Gayer, A., Mucha, D. (2015). Disability-adjusted life years in the assessment of health effects of traffic-related air pollution. Advances in Experimental Medicine and Biology, 834, pp. 15-20

  • [42] Jelicic, V., Magno, M., Brunelli, D., Paci, G., Benini, L. (2013). Context-Adaptive Multimodal Wireless Sensor Network for Energy-Efficient Gas Monitoring. IEEE Sensors Journal, 13, 328-338.

  • [43] Yi, G., Guiling, S., Weixiang, L., Yong, P. (2009). Wireless sensor node design based on solar energy supply. 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), 203-207.

  • [44] Carvalho, V., Lopes, J.G., Ramos, H.G., Correa Alegria, F. (2009). City-wide mobile air quality measurement system. 2009 IEEE Sensors, 546-551.

  • [45] Touati, F., Galli, A., Crescini, D., Crescini, P., Mnaouer, A. (2015). Feasibility of air quality monitoring systems based on environmental energy harvesting. 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 266-271.

  • [46] Touati, F., Legena, C., Galli, A., Crescini, D., Crescini, P., Mnaouer, A.B. Environmentally Powered Multiparametric Wireless Sensor Node for Air Quality Diagnostic. Sensors and Materials, 27(2), 177−189.

  • [47] Michalski, A., Staroszczyk, Z., Dziadak, B. (2009). Selected aspects of wireless sensor network for petroleum derivative monitoring system. Przeglad Elektrotechniczny, 85(4), 1−3.

  • [48] Hormann, L.B., Glatz, P.M., Steger, C., Weiss, R. (2010). A wireless sensor node for river monitoring using MSP430 and energy harvesting. 2010 4th European. Presented at the Education and Research Conference (EDERC), 140-144.

  • [49] Alippi, C., Camplani, R., Galperti, C., Roveri, M. (2008). Effective design of WSNs: From the lab to the real world. 3rd International Conference on Sensing Technology, 2008, ICST 2008, 1-9.

  • [50] Mihajlovic, Z., Joza, A., Milosavljevic, V., Rajs, V., Zivanov, M. (2015). Energy harvesting wireless sensor node for monitoring of surface water. 2015 21st International Conference on Automation and Computing (ICAC), 1-6.

  • [51] Dziadak, B., Makowski, L., Michalski. (2013). Some Practical Problems of Communications Reliability in Enviromental Monitoring Systems. Metrol. Meas. Syst., 20(3), 337−350.

  • [52] Shenoy, P., Ganesan, D., Irwin, D., Gummeson, J., Sharma, N., Somerville. T., Rivernet, A. (2016). Wireless Sensor Network for remote monitoring of riverbed ecosystems, http://sensors.cs.umass.edu/projects/rivernet/

  • [53] Alippi, C., Camplani, R., Galperti, C., Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11, 45-55.

  • [54] Capella, J.V., Bonastre, A., Ors, R., Peris, M. (2013). In line river monitoring of nitrate concentration by means of a Wireless Sensor Network with energy harvesting. Sensors and Actuators B: Chemical, 177, 419-427.

  • [55] Michalski, A., Dziadak, B., Makowski, L. (2008). Mobile-Observation-Point-Selected Aspects in Design and Signal Transmission. IEEE Transactions on Instrumentation and Measurement, 57, 1695-1702. [Crossref]

  • [56] Srujana, B.S., Neha, Mathews, P., Harigovindan, V.P. (2015). Multi-source Energy Harvesting System for Underwater Wireless Sensor Networks. Proc. of the International Conference on Information and Communication Technologies, ICICT 2014, Kochi, India, 46, 1041-1048.

  • [57] Rodriguez de la Concepcion, A., Stefanelli, R., Trinchero, D. (2014). A wireless sensor network platform optimized for assisted sustainable agriculture. 2014 IEEE Global Humanitarian Technology Conference (GHTC), 159-165.

  • [58] Matese, A., Di Gennaro, S.F., Zaldei, A., Genesio, L., Vaccari, F.P. (2009). A wireless sensor network for precision viticulture: The NAV system. Computers and Electronics in Agriculture, 69, 51-58. [Crossref]

  • [59] Konstantopoulos, C., Koutroulis, E., Mitianoudis, N., Bletsas, A., (2016). Converting a Plant to a Battery and Wireless Sensor with Scatter Radio and Ultra-Low Cost. IEEE Transactions on Instrumentation and Measurement, 65, 388-398. [Crossref]

  • [60] Gedda, R. (2009). 200 solar-powered network sensors to monitor rainforest. Techworld Australia. http://www.techworld.com.au/article/307279/200_solar-powered_network_sensors_monitor_rainforest/

  • [61] Burgess, S.S.O., Kranz, M.L., Turner, N.E., Cardell-Oliver, R., Dawson, T.E. (2010). Harnessing wireless sensor technologies to advance forest ecology and agricultural research. Agricultural and Forest Meteorology, 150, 30-37.

  • [62] Wu, X., Lee, D.W. (2014). An electromagnetic energy harvesting device based on high efficiency windmill structure for wireless forest fire monitoring application. Sensors and Actuators A: Physical, 219, 73-79.

  • [63] Philipp, F., Zhao, P., Samman, F.A., Glesner, M., Dassanayake, K.B., Maheswararajah, S., Halgamuge, S. (2012). Adaptive wireless sensor networks powered by hybrid energy harvesting for environmental monitoring. 2012 IEEE 6th International Conference on Information and Automation for Sustainability (ICIAfS), 285-289.

  • [64] Morais, R., Fernandes, M.A., Matos, S.G., Serodio, C., Ferreira, P.J.S.G., Reis, M.J.C.S. (July 2008). A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and Electronics in Agriculture, 62, 94-106. [Crossref]

  • [65] Dziadak, B., Michalski, A. (2011). Evaluation of the Hardware for a Mobile Measurement Station. IEEE Transactions on Industrial Electronics, 58, 2627-2635. [Crossref]

  • [66] Lee, E.A., Rabaey, J., Hartmann, B., Kubiatowicz, J., Pister, K., Sangiovanni-Vincentelli, A., Seshia, S.A., Wawrzynek, J., Wessel, D., Rosing, T.S., Blaauw, D., Dutta, P., Fu, K., Guestrin, C., Taskar, B., Jafari, R., Jones, D., Kumar, V., Mangharam, R., Pappas, G.J., Murray, R.M., Rowe, A. (2014). The Swarm at the Edge of the Cloud. Design & Test, IEEE. 31(3), 8−20.

About the article

Received: 2016-03-21

Accepted: 2016-07-17

Published Online: 2016-12-13

Published in Print: 2016-12-01

Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2016-0053. Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (CC BY-NC-ND 4.0)

Comments (0)

Please log in or register to comment.
Log in