Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 24, Issue 1 (Mar 2017)

Analysis of Errors of Piezoelectric Sensors used in Weapon Stabilizers

Igor Korobiichuk
  • Corresponding author
  • Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, 02-486 Warsaw, Poland
  • Email:
Published Online: 2017-03-20 | DOI: https://doi.org/10.1515/mms-2017-0001

Abstract

Effectiveness of operation of a weapon stabilization system is largely dependent on the choice of a sensor, i.e. an accelerometer. The paper identifies and examines fundamental errors of piezoelectric accelerometers and offers measures for their reduction. Errors of a weapon stabilizer piezoelectric sensor have been calculated. The instrumental measurement error does not exceed 0.1 × 10−5 m/s2. The errors caused by the method of attachment to the base, different noise sources and zero point drift can be mitigated by the design features of piezoelectric sensors used in weapon stabilizers.

Keywords: acceleration; piezoelectric sensor; errors; weapon stabilizer

References

  • [1] Lai, A., James, D.A., Hayes, J.P., Harvey, E.C. (2004). Semi-automatic calibration technique using six inertial frames of reference. Proc. of SPIE × The International Society for Optical Engineering, 5274, 531−542.Google Scholar

  • [2] Lakehal, A., Ghemari, Z. (2016). Suggestion for a new design of the piezoresistive accelerometer. Ferroelectrics, 493(1), 93−102.Web of ScienceGoogle Scholar

  • [3] Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Nowicki, M., Szewczyk, R., Shadura, V. (2015). Aviation gravimetric system. International Journal of Scientific & Engineering Research, 6(7), 1122−1127.Google Scholar

  • [4] Liu, Y., Ji, T., et al. (2016). Calibration and compensation for accelerometer based on Kalman filter and a six-position method. Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 38(1), 94−98, 110.Google Scholar

  • [5] Gao, J.M., Zhang, K.B., et al. (2015). Temperature characteristics and error compensation for quartz flexible accelerometer. International Journal of Automation and Computing, 12(5), 540−550.Google Scholar

  • [6] Korobiichuk, I. (2016). Mathematical model of precision sensor for an automatic weapons stabilizer system. Measurement, http://dx.doi.org/10.1016/j.measurement.2016.04.017.CrossrefGoogle Scholar

  • [7] Korobiichuk, I., Bezvesilna, O., et al. (2016). Design of piezoelectric gravimeter for automated aviation gravimetric system. Journal of Automation, Mobile Robotics & Intelligent Systems (JAMRIS), 10(1).Google Scholar

  • [8] Korobiichuk, I., Bezvesilna, O., et al. (2016). Piezoelectric gravimeter of the aviation gravimetric system. Advances in Intelligent Systems and Computing 440. Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.), Challenges in Automation, Robotics and Measurement Techniques. Proc. of AUTOMATION-2016, Warsaw, Poland, 753−763.Google Scholar

  • [9] Korobiichuk, I., Bezvesilna, O., et al. (2015). Stabilization system of aviation gravimeter. International Journal of Scientific & Engineering Research, 6(8), 956−959.Google Scholar

  • [10] Fan, C., Hu, X., et al. (2014). Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors. Sensors, 14(9), 16003−16016.Web of ScienceCrossrefGoogle Scholar

  • [11] Quinchia, A.G., Falco, G., Falletti, E., Dovis, F., Ferrer, C. (2013). A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors, 13(8), 9549−9588.Web of ScienceCrossrefGoogle Scholar

  • [12] Karachun, V., Mel’nick, V., Korobiichuk, I., Nowicki, M., Szewczyk, R., Kobzar, S. (2016). The Additional Error of Inertial Sensor Induced by Hypersonic Flight Condition. Sensors, 16(3).CrossrefGoogle Scholar

  • [13] Lobanov, V.S., Tarasenko, N.V., et al. (2007). Fiber-optic gyros & quartz accelerometers for motion control. IEEE Aerospace and Electronic Systems Magazine. 22(4), 23−29.CrossrefGoogle Scholar

  • [14] Guo, Y., Kakimoto, K.I., Ohsato, H. (2005). (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Materials Letters, 59(2−3), 241−244.Web of ScienceGoogle Scholar

  • [15] Tables of fundamental properties of piezoceramic materials manufactured by Ferropiezoelectric Material Division, devices and tools of Research Institute of Physics SFU [electronic resource]. – Access mode, http://www.piezotech.ru/PKR.htm.Google Scholar

  • [16] Arlou, Y.Y., Tsyanenka, D.A., Sinkevich, E.V. (2015). Wideband computationally-effective worst-case model of twisted pair radiation. Proc. of the International Conference Days on Diffraction, 14−19.Google Scholar

  • [17] Meggiolaro, M.A., Castro, J.T.P.D., Góes, R.C.D.O. (2016). Elastoplastic nominal stress effects in the estimation of the notch-tip behavior in tension. Theoretical and Applied Fracture Mechanics.Google Scholar

  • [18] Korobiichuk, I., Koval, A., Nowicki, M., Szewczyk, R. Investigation of the Effect of Gravity Anomalies on the Precession Motion of Single Gyroscope Gravimeter. Solid State Phenomena, 251, 139−145.Google Scholar

About the article

Received: 2016-04-24

Accepted: 2016-08-28

Published Online: 2017-03-20

Published in Print: 2017-03-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2017-0001.

Export Citation

© 2017 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in