Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 24, Issue 1 (Mar 2017)

Measurements of Concentration differences between Liquid Mixtures using Digital Holographic Interferometry

Carlos Guerrero-Méndez
  • Corresponding author
  • 1) Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Ramón López Velarde 801, C.P. 98000, Zacatecas, Mexico
  • Email:
/ Tonatiuh Saucedo-Anaya
  • 2) Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad Esq. Con Paseo La Bufa S/N, C.P. 98060, Zacatecas, Mexico
  • Email:
/ Maria Araiza-Esquivel
  • 1) Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Ramón López Velarde 801, C.P. 98000, Zacatecas, Mexico
  • Email:
/ Raúl E. Balderas-Navarro
  • 3) Instituto de Investigación en Comunicación Óptica (IICO-UASLP), Karakorum 1470, Lomas 4ta. Sección, C.P. 78210, San Luis Potosí, Mexico
  • Email:
/ Alfonso López-Martínez
  • 1) Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Ramón López Velarde 801, C.P. 98000, Zacatecas, Mexico
  • Email:
/ Carlos Olvera-Olvera
  • 1) Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Ramón López Velarde 801, C.P. 98000, Zacatecas, Mexico
  • Email:
Published Online: 2017-03-20 | DOI: https://doi.org/10.1515/mms-2017-0002

Abstract

We present an alternative method to detect and measure the concentration changes in liquid solutions. The method uses Digital Holographic Interferometry (DHI) and is based on measuring refractive index variations. The first hologram is recorded when a wavefront from light comes across an ordinary cylindrical glass container filled with a liquid solution. The second hologram is recorded after slight changing the liquid’s concentration. Differences in phase obtained from the correlation of the first hologram with the second one provide information about the refractive index variation, which is directly related to the changes in physical properties related to the concentration. The method can be used − with high sensitivity, accuracy, and speed − either to detect adulterations or to measure a slight change of concentration in the order of 0.001 moles which is equivalent to a difference of 0.003 g of sodium chloride in solutions. The method also enables to measure and calculate the phase difference among each pixel of two samples. This makes it possible to generate a global measurement of the phase difference of the entire sensed region.

Keywords: Digital Holographic Interferometry; refractive index measurements; phase difference; full-field measurements

References

  • [1] Cracolice, M.S. (2016). Basics of Introductory Chemistry with Math Review. Montana: Brooks/Cole.Google Scholar

  • [2] Henrickson, C. (2010). CliffsNotes Chemistry Practice Pack. Ney Jersey: J. Wiley & Sons.Google Scholar

  • [3] Hecht, E. (2002). Optics. 4th ed. San Francisco: Addison-Wesley.Google Scholar

  • [4] Kress-Rogers, E., Brimelow, C.J.B. (2001). Instrumentation and Sensors for the Food Industry. 2nd ed. Abington: Woodhead Pubishing Limited.Google Scholar

  • [5] Chandra, B., Bhaiya, S. (1983). A simple, accurate alternative to the minimum deviation method of determining the refractive index of liquids. Am. J. Phys., 51(2), 160−161.CrossrefGoogle Scholar

  • [6] Grange, B., Stevenson, W.H., Viskanta, R. (1976). Refractive index of liquid solutions at low temperatures: an accurate measurement. Appl. Opt., 15(4), 858−859.CrossrefGoogle Scholar

  • [7] Edmiston, M.D. (1986). Measuring refractive indices. Phys. Teach., 24(3), 160−163.CrossrefGoogle Scholar

  • [8] Shenoy, M.R.S., Thyagarajan, K. (1990). Simple prism coupling technique to measure the refractive index of a liquid and its variation with temperature. Rev. Sci. Instrum., 61(3), 1010−1013.CrossrefGoogle Scholar

  • [9] Fan, J.P.L.C-H. (1998). Precision laser-based concentration and refractive index measurement of liquids. Microscale Thermophysical Engineering, 2(4), 261−272.CrossrefGoogle Scholar

  • [10] Nemoto, S. (1992). Measurement of the refractive index of liquid using laser beam displacement. Appl. Opt., 31(31), 6690−6694.CrossrefGoogle Scholar

  • [11] Moreels, E., De, Greef C., Finsy, R. (1984). Laser light refractometer. Appl. Opt., 23(17), 3010−3013.CrossrefGoogle Scholar

  • [12] Toker, G.R. (2012). Holographic interferometry: A Mach-Zehnder Approach. Boca Raton: Taylor & Francis Group.Google Scholar

  • [13] Colombani, J., Bert, J. (2007). Holographic interferometry for the study of liquids. J. Mol. Liq., 134(1), 8−14.Web of ScienceCrossrefGoogle Scholar

  • [14] Kreis, T. (2005). Handbook of holographic interferometry: Optical and Digital Methods. Klagenfurter: WILEY-VCH Verlag GmbH & Co.KGaA.Google Scholar

  • [15] Goldstein, R.J. (1996). Fluid mechanics measurements. 2nd ed. Philadelphia: Taylor & Francis Group.Google Scholar

  • [16] Hossain, M.M., Mehta, D.S., Shakher, C. (2006). Refractive index determination: an application of lensless fourier digital holography. Opt. Eng., 45(10), 106203−106203.CrossrefGoogle Scholar

  • [17] Zhang, Y., Zhao, J., Di J., Jiang, H., Wang, Q., Wang, J., Guo, Y., Yin, D. (2012). Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry. Opt. Express, 20(16), 18415−18421.Web of ScienceCrossrefGoogle Scholar

  • [18] Zhao, J., Zhang, Y., Jiang, H., Di, J. (2013). Dynamic measurement for the solution concentration variation using digital holographic interferometry and discussion for the measuring accuracy. Proc. icOPEN2013, Singapore, Singapure, 87690D−87690D.Google Scholar

  • [19] Takeda, M., Ina, H. Kobayashi, S. (1982). Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Jos. A., 72(1), 156−160.Google Scholar

  • [20] Haynes. W.M. (2015). Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity 96th ed., Boca Raton: Taylor & Francis Group.Google Scholar

  • [21] Saucedo, A.T., Mendoza, F., De la Torre-Ibarra M., Pedrini, G., Osten, W. (2006). Endoscopic pulsed digital holography for 3D measurements. Opt. Express, 14(4), 1468−1475.CrossrefGoogle Scholar

About the article

Received: 2015-12-03

Accepted: 2016-08-28

Published Online: 2017-03-20

Published in Print: 2017-03-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2017-0002.

Export Citation

© 2017 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in