Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Open Access
Online
ISSN
2300-1941
See all formats and pricing
More options …
Volume 24, Issue 1 (Mar 2017)

Issues

Estimation of UAV Position with Use of Smoothing Algorithms

Piotr Kaniewski
  • Corresponding author
  • Military University of Technology, Institute of Radioelectronics, Gen. S. Kaliski 2, 00-908 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafał Gil / Stanisław Konatowski
Published Online: 2017-03-20 | DOI: https://doi.org/10.1515/mms-2017-0013

Abstract

The paper presents methods of on-line and off-line estimation of UAV position on the basis of measurements from its integrated navigation system. The navigation system installed on board UAV contains an INS and a GNSS receiver. The UAV position, as well as its velocity and orientation are estimated with the use of smoothing algorithms. For off-line estimation, a fixed-interval smoothing algorithm has been applied. On-line estimation has been accomplished with the use of a fixed-lag smoothing algorithm. The paper includes chosen results of simulations demonstrating improvements of accuracy of UAV position estimation with the use of smoothing algorithms in comparison with the use of a Kalman filter.

Keywords: Unmanned Aerial Vehicle; Inertial Navigation System; Global Navigation Satellite System; Integrated Navigation System; Synthetic Aperture Radar; Kalman Filter; Smoothing Algorithm

References

  • [1] Matuszewski, J. (2008). Specific emitter identification. International Radar Symposium, Wroclaw, 1–4.Google Scholar

  • [2] Cumming, I.G., Wong, F.H., (2005). Digital Processing of Synthetic Aperture Radar Data. Algorithms and Implementation. Artech House.Google Scholar

  • [3] Mengdao, X., Xiuwei, J., Renbiao, W., Feng, Z., Zheng, B. (2009). Motion Compensation for UAV SAR Based on Raw Radar Data. IEEE Transactions an Geoscience and Remote Sensing, 8, 2870–2883.Google Scholar

  • [4] Samczyński, P., Malanowski, M., Gromek, D., Gromek, A., Kulpa, K., Krzonkalla, J., Mordzonek, M., Nowakowski, M. (2014). Effective SAR image creation using low cost INS/GPS. International Radar Symposium, Gdańsk, 174−177.Google Scholar

  • [5] Groves, P. (2008). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Artech House.Google Scholar

  • [6] Titterton, D.H., Weston, J.L. (2004). Strapdown Inertial Navigation Technology. Institution of Electrical Engineers, UK, 17−57.Google Scholar

  • [7] Farrell, J.A. (2008). Aided Navigation GPS with High Rate Sensors. McGraw-Hill.Google Scholar

  • [8] Anderson, B.D.O., Moore, J.B. (1979). Optimal Filtering. Prentice-Hall, INC, Englewood Cliffs, New Jersey.Google Scholar

  • [9] Brown, R.G., Hwang, P.Y.C. (2012). Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, Inc.Google Scholar

  • [10] Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge University Press.Google Scholar

  • [11] Kaniewski, P. (2010). Structures, models and algorithms in integrated positioning and navigation systems. Wyd. WAT, Warszawa.Google Scholar

  • [12] Gelb, A. (2001). Applied Optimal Estimation. Massachusetts Institute of Technology, Cambridge, Massachusetts and London.Google Scholar

  • [13] Li, X., Xie, Y., Bi, D., Ao, Y. (2013). Kalman Filter Based Method for Fault Diagnostics of Analog Circuits. Metrol. Meas. Syst., 20(2), 307−322.CrossrefGoogle Scholar

  • [14] Konatowski, S., Pienieżny, A.T. (2007). A comparison of estimation accuracy by the use of KF, EKF & UKF filters. WIT Transactions on Modelling and Simulation, 46, 779−789.Google Scholar

  • [15] Śmieszek, M., Dobrzańska, M. (2015). Application of Kalman Filter in Navigation Process of Automated Guided Vehicles. Metrol. Meas. Syst., 22(3), 443−454.Web of ScienceCrossrefGoogle Scholar

  • [16] Fornaro, G. (1999). Trajectory deviations in airborne SAR: analysis and compensation. IEEE Transactions on Aerospace and Electronics Systems, 35(3), 997−1009.Google Scholar

  • [17] Kaniewski, P., Leśnik, C., Susek, W., Serafin, P. (2015). Airborne radar terrain imaging system. International Radar Symposium, Dresden, 248−253.Google Scholar

  • [18] Einicke, G.A. (2012). Smoothing, Filtering and Prediction: Estimating the Past, Present and Future. Published by InTech.Google Scholar

  • [19] Meditch, J.S. (1969). Stochastic Optimal Linear Estimation and Control. New York, McGraw Hill.Google Scholar

  • [20] Łabowski, M., Kaniewski, P., Konatowski, S., (2016). Estimation of flight path deviations for SAR radar installed on UAV. Metrol. Meas. Syst., 23(3), 383–391.CrossrefWeb of ScienceGoogle Scholar

  • [21] Rauch, H.E., (1963). Solutions to the Linear Smoothing Problem. IEEE Transactions on Automatic Control, 8, 371−372.CrossrefGoogle Scholar

  • [22] Rauch, H.E., Tung, F., Striebel, C.T. (1965). Maximum Likelihood Estimation of Linear Dynamic Systems. AIAA Journal, 3(8), 1445−1450.CrossrefGoogle Scholar

  • [23] Techy, L., Morgansen, K.A., Woolsey, C.A. (2011). Long-baseline acoustic localization of the Seaglider underwater glider. American Control Conference (ACC), San Francisco.Google Scholar

  • [24] Kaniewski, P., Konatowski, S., (2014). Software Toolbox for Simulation of Integrated Navigation Systems. Przegląd Elektrotechniczny, 90(8), 168−171.Google Scholar

  • [25] Bednarek, M., Będkowski, L. (2008). Dąbrowski T.: Comparative-threshold diagnosing in messages transmission system. Przegląd Elektrotechniczny, 84(11A), 320−324.Google Scholar

About the article

Received: 2016-07-28

Accepted: 2016-10-09

Published Online: 2017-03-20

Published in Print: 2017-03-01


Citation Information: Metrology and Measurement Systems, ISSN (Online) 2300-1941, DOI: https://doi.org/10.1515/mms-2017-0013.

Export Citation

© 2017 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in