Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Molecular Imprinting

Published in Association with Society for Molecular Imprinting

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Twenty years since ‘antibody mimics’ by molecular imprinting were first proposed: A critical perspective

Jenna L. Bowen
  • Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Panagiotis Manesiotis
  • Department of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chris J. Allender
  • Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-27 | DOI: https://doi.org/10.2478/molim-2013-0001


In February 1993, the group of Klaus Mosbach published their milestone study in Nature where, for the first time, non-covalent molecular imprints were employed in a competitive binding assay. In this seminal piece of work, and also for the first time, they refer to molecularly imprinted polymers as being ‘antibody mimics’ and hypothesised that these synthetic materials could one day provide ‘a useful, general alternative to antibodies’. This perspective article examines how far we have come in the 20 years since this publication in terms of realising this hypothesis and poses the question of whether we actually need molecularly imprinted polymers to be a general alternative to antibodies.

Keywords: Antibody mimic; Molecular imprinting; Plastic antibodies

  • Wulff G. and Sarhan A., Use of polymers with enzymeanalogous structures for the resolution of racemates. Angew. Chem. Int. Ed. Engl., 1972, 11(4), 341. Google Scholar

  • Vlatakis G., et al., Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361(6413), 645-647. Google Scholar

  • Alexander C., et al., Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recognit., 2006, 19(2), 106-180. Google Scholar

  • MIP Database. (accessed: 05/02/2012); Available from: www.mipdatabase.com. Google Scholar

  • Pichon V. and Chapuis-Hugon F., Role of molecularly imprinted polymers for selective determination of environmental pollutants - A review. Anal. Chim. Acta, 2008, 622(1-2), 48-61. Google Scholar

  • Manesiotis P., et al., Applications of SPE-MIP in the field of food analysis, in Comprehensive Sampling and Sample Preparation, J. Pawliszyn, Editor. 2012, Elsevier. Google Scholar

  • Manesiotis P., Osmani Q., and McLoughlin P., An enantioselective chromatographic stationary phase for S-ibuprofen prepared by stoichiometric molecular imprinting. J. Mater. Chem., 2012, 22(22), 11201-11207. Web of ScienceCrossrefGoogle Scholar

  • Ansell R.J., Molecularly imprinted polymers for the enantioseparation of chiral drugs. Adv. Drug Delivery Rev., 2005, 57(12), 1809-1835. CrossrefGoogle Scholar

  • Zurutuza A., et al., Molecularly imprinted solid-phase extraction of cocaine metabolites from aqueous samples. Anal. Chim. Acta, 2005, 542(1), 14-19. Google Scholar

  • Kryscio D.R. and Peppas N.A., Critical review and perspective of macromolecularly imprinted polymers. Acta Biomaterialia, 2012, 8(2), 461-473. PubMedWeb of ScienceCrossrefGoogle Scholar

  • Sellergren B., ed. Molecularly Imprinted Polymers - Manmade mimics of antibodies and their applications in analytical chemistry. 2001, Elsevier. Google Scholar

  • Haupt K. and Mosbach K., Plastic antibodies: developments and applications. Trends Biotechnol., 1998, 16(11), 468- 475. PubMedCrossrefGoogle Scholar

  • Saper C.B., An open letter to our readers on the use of antibodies. J. Comp. Neurol., 2005, 493(4), 477-478. Google Scholar

  • Couchman J.R., Commercial antibodies: The good, bad, and really ugly. J. Histochem. Cytochem., 2009, 57(1), 7-8. Web of ScienceGoogle Scholar

  • Coico R. and Sunshine G., Immunology: A Short Course. 6th ed. 2009: Wiley-Blackwell. Google Scholar

  • Manesiotis P., et al., Water-compatible imprinted polymers for selective depletion of riboflavine from beverages. J. Mater. Chem., 2009, 19(34), 6185-6193. Web of ScienceGoogle Scholar

  • Asanuma H., Hishiya T., and Komiyama M., Tailor-made receptors by molecular imprinting. Adv. Mater., 2000, 12(14), 1019-1030. CrossrefGoogle Scholar

  • Janiak D.S. and Kofinas P., Molecular imprinting of peptides and proteins in aqueous media. Anal. Bioanal. Chem., 2007, 389(2), 399-404. Google Scholar

  • Manesiotis P., et al., An artificial riboflavin receptor prepared by a template analogue imprinting strategy. Angew. Chem., Int. Ed. Engl., 2005, 44(25), 3902-3906. CrossrefGoogle Scholar

  • Nicholls I.A. and Andersson H.S., Thermodynamic principles underlying molecularly imprinted polymer formulation and ligand recognition, in Molecularly Imprinted Polymers - Man-made Mimics of Antibodies and their Applications in Analytical Chemistry, B. Sellergren, Editor. 2001, Elsevier. Google Scholar

  • Turner N.W., et al., From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog., 2006, 22(6), 1474- 1489. PubMedCrossrefGoogle Scholar

  • Bossi A., et al., Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron., 2007, 22(6), 1131-1137. PubMedCrossrefGoogle Scholar

  • Hart B.R. and Shea K.J., Synthetic peptide receptors: Molecularly imprinted polymers for the recognition of peptides using peptide-metal interactions. J. Am. Chem. Soc., 2001, 123(9), 2072-2073. Google Scholar

  • Kempe M., Glad M., and Mosbach K., An approach towards surface imprinting using the enzyme ribonuclease A. J. Mol. Recognit., 1995, 8(1-2), 35-9. CrossrefGoogle Scholar

  • Mallik S., et al., Towards materials for the specific recognition and separation of proteins. New J. Chem., 1994, 25(30), 299-304. Google Scholar

  • Titirici M.M., Hall A.J., and Sellergren B., Hierarchical imprinting using crude solid phase peptide synthesis products as templates. Chem. Mater., 2003, 15(4), 822-824. CrossrefGoogle Scholar

  • Titirici M.M. and Sellergren B., Peptide recognition via hierarchical imprinting. Anal. Bioanal. Chem., 2004, 378(8), 1913-1921. Google Scholar

  • Rachkov A. and Minoura N., Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J. Chromatogr. A., 2000, 889(1-2), 111-118. Google Scholar

  • Rachkov A. and Minoura N., Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim. Biophys. Acta, 2001, 1544(1-2), 255- 266. Google Scholar

  • Nishino H., Huang C.-S., and Shea K.J., Selective protein capture by epitope imprinting. Angew. Chem., Int. Ed. Engl., 2006, 45(15), 2392-2396. CrossrefGoogle Scholar

  • Hoshino Y., et al., Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: A plastic antibody. J. Am. Chem. Soc., 2010, 132(19), 6644- 6645. Web of ScienceGoogle Scholar

  • Hoshino Y., et al., Peptide imprinted polymer nanoparticles: A plastic antibody. J. Am. Chem. Soc., 2008, 130(46), 15242- 15243. Google Scholar

  • Hoshino Y., et al., Design of synthetic polymer nanoparticles that capture and neutralize a toxic peptide. Small, 2009, 5(13), 1562-1568. Web of SciencePubMedCrossrefGoogle Scholar

  • Cutivet A., et al., Molecularly imprinted microgels as enzyme inhibitors. J. Am. Chem. Soc., 2009, 131(41), 14699-14702. Google Scholar

About the article

Received: 2012-12-12

Accepted: 2013-02-15

Published Online: 2013-02-27

Citation Information: Molecular Imprinting, Volume 1, Pages 35–40, ISSN (Online) 2084-8803, DOI: https://doi.org/10.2478/molim-2013-0001.

Export Citation

©2013 Versita Sp. z o.o.. This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mehmet Dinc, Hasan Basan, Tim Hummel, Marlen Müller, Harald Sobek, Ingrid Rapp, Thomas Diemant, Rolf Jürgen Behm, Mika Lindén, and Boris Mizaikoff
ChemistrySelect, 2018, Volume 3, Number 16, Page 4277
Charlotte Boitard, Agnès Bée, Christine Ménager, and Nébéwia Griffete
Journal of Materials Chemistry B, 2018
Peter Dobranowski, Fuqiang Ban, Alberto Contreras-Sanz, Artem Cherkasov, and Peter C. Black
Chemical Biology & Drug Design, 2017
G. Neusser, S. Eppler, J. Bowen, C. J. Allender, P. Walther, B. Mizaikoff, and C. Kranz
Nanoscale, 2017
Derek Stevenson, Hazim F EL-Sharif, and Subrayal M Reddy
Bioanalysis, 2016, Volume 8, Number 21, Page 2255
Eylem Turan and Ferat Şahin
Sensors and Actuators B: Chemical, 2016, Volume 227, Page 668
Jun He, Jian Huang, Yonghe He, Peng Cao, Matthias Zeller, Allen D. Hunter, and Zhengtao Xu
Chemistry - A European Journal, 2016, Volume 22, Number 5, Page 1597
Paula Mattos dos Santos, Andrew J. Hall, and Panagiotis Manesiotis
Journal of Chromatography B, 2016, Volume 1021, Page 197
Amanda L. Bole and Panagiotis Manesiotis
Advanced Materials, 2016, Volume 28, Number 27, Page 5349
Hani E. J. Kaba, Antonia Pölderl, and Ursula Bilitewski
Analytical Chemistry, 2015, Volume 87, Number 17, Page 8629
Stella K. Tsermentseli, Panagiotis Manesiotis, Andreana N. Assimopoulou, and Vassilios P. Papageorgiou
Journal of Chromatography A, 2013, Volume 1315, Page 15
P. Manesiotis, A. Riley, and B. Bollen
J. Mater. Chem. C, 2014, Volume 2, Number 42, Page 8990

Comments (0)

Please log in or register to comment.
Log in