Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Molecular Imprinting

Published in Association with Society for Molecular Imprinting

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

MIP-based immunoassays: State of the Art, limitations and Perspectives

Claudio Baggiani
  • Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Laura Anfossi
  • Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristina Giovannoli
  • Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-13 | DOI: https://doi.org/10.2478/molim-2013-0002


Immunoassay is one of the most popular analytical methods with widespread applications. However, it presents several drawbacks because of the proteic nature of the antibodies. Molecular imprinting technology has shown a growing ability to prepare artificial molecular recognition systems, with binding properties very similar to those of natural antibodies. This review deals with the application of molecular imprinting technology to immunoassay, with an attention for the state of the art, the current limitations and the possible solutions to these issues.

Keywords: Molecularly imprinted polymers; Plastibodies; Molecularly imprinted sorbent assay; Immunoassay; Radioimmunoassay; Enzyme immunoassay; Fluoroimmunoassay

  • [1] Sellergren B. (ed), Molecularly imprinted polymers: manmade mimics of antibodies and their applications in analytical chemistry, Elsevier Science, Amsterdam, The Netherlands, 2004. Google Scholar

  • [2] Harlow E., Lane D., Antibodies: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA, 1988 Google Scholar

  • [3] Vlatakis G., Anderson L.I., Muller R., Mosbach K., Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361, 645-647. Google Scholar

  • [4] Ekins R.P., The estimation of thyroxine in human plasma by an electrophoretic technique. Clin. Chim. Acta, 1960, 5, 453- 459. PubMedCrossrefGoogle Scholar

  • [5] Yalow R.S., Berson S.A., Assay of plasma insulin in human subjects by immunological methods, Nature, 1959,184, 1648-1649. Google Scholar

  • [6] Tijssen P., Practice and theory of enzyme immunoassay, Elsevier Science, Amsterdam, The Netherlands, 1985. Google Scholar

  • [7] Ekins R.P., Ligand assays: from electrophoresis to miniaturized microarrays, Clin. Chem., 1998, 44, 2015-2030. PubMedGoogle Scholar

  • [8] Ramström O., Ye L., Mosbach K., Artificial antibodies to corticosteroids prepared by molecular imprinting, Chem. Biol., 1996, 3, 471-477. CrossrefGoogle Scholar

  • [9] Anderson L.I., Muller R., Vlatakis G., Mosbach K., Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine, Proc. Natl. Acad. Sci. USA, 1995, 92, 4788-4792. CrossrefGoogle Scholar

  • [10] Senholdt M., Siemann M., Mosbach K., Anderson L.I., Determination of cyclosporin A and metabolites total concentration using a molecularly imprinted polymer based radioligand binding assay, Anal. Lett., 1997, 30, 1809- 1821. Google Scholar

  • [11] Siemann M., Anderson L.I., Mosbach K., Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers, J. Agric. Food Chem., 1996, 44, 141-145. CrossrefGoogle Scholar

  • [12] Muldoon M.T., Stanker L.H., Polymer synthesis and characterization of a molecularly imprinted sorbent assay for atrazine, J. Agric. Food Chem., 1995, 43, 1424-1427. CrossrefGoogle Scholar

  • [13] Berglund J., Nicholls I.A., Lindbladh C., Mosbach K., Recognition in molecularly imprinted polymer a2- adrenoreceptor mimics, Bioorg. Med. Chem. Lett., 1996, 6, 2237-2242. Google Scholar

  • [14] Anderson L.I., Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol, Anal. Chem., 1996, 68, 111-117. Google Scholar

  • [15] Bengtsson H., Roos U., Anderson L.I., Molecular imprint based radioassay for direct determination of S-propranolol in human plasma, Anal. Commun., 1997, 34, 233-235. CrossrefGoogle Scholar

  • [16] Haupt K., Dzgoev A., Mosbach K., Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element, Anal. Chem., 1998, 70, 628-631. PubMedGoogle Scholar

  • [17] Ansell R.J., Mosbach K, Magnetic molecularly imprinted polymer beads for drug radioligand binding assay, 1998, 123, 1611-1616. Google Scholar

  • [18] Ye L., Cormack P.A.G., Mosbach K., Molecularly imprinted monodisperse microspheres for competitive radioassay, Anal. Commun., 1999, 36, 35-38. CrossrefGoogle Scholar

  • [19] Tse Sum Bui B., Belmont A.S., Witters H., Haupt K., Molecular recognition of endocrine disruptors by synthetic and natural 17b-estradiol receptors: a comparative study, Anal. Bioanal. Chem., 2008, 390, 2081-2088. Google Scholar

  • [20] Ye L., Surugiu I., Haupt K., Scintillation proximity assay using molecularly imprinted microspheres, Anal.,Chem., 2002, 74, 959-964. PubMedCrossrefGoogle Scholar

  • [21] Engvall E., Perlmann P.G., Enzyme-linked immunosorbent assay of immunoglobulin G, Immunochemistry, 1971, 8, 871- 874. CrossrefPubMedGoogle Scholar

  • [22] Van Weeman B.K., Schuurs A.H.W.M., Immunoassay using antigen-enzyme conjugates, FEBS Lett., 1971, 15, 232-236. CrossrefGoogle Scholar

  • [23] Surugiu I., Ye L., Yilmaz E., Dzgoev A., Danielsson B., Mosbach K., Haupt K., An enzyme-linked molecularly imprinted sorbent assay, Analyst, 2000, 125, 13-16. Google Scholar

  • [24] Surugiu I., Danielsson B., Ye L., Mosbach K., Haupt K., Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody, Anal. Chem., 2001, 73, 487-491. PubMedCrossrefGoogle Scholar

  • [25] Surugiu I., Svitel J., Ye L., Haupt K., Danielsson B., Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody, Anal. Chem., 2001. 73, 4388-4392. CrossrefPubMedGoogle Scholar

  • [26] Piletsky S.A., Piletska E.V., Chen B., Karim K., Weston D., Barrett G., Lowe P., Turner A.P.F., Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination, Anal. Chem., 2000, 72, 4381-4385. CrossrefGoogle Scholar

  • [27] Piletsky S.A., Piletska E.V., Bossi A., Karim K., Lowe P., Turner A.P.F., Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays, Biosens. Bioelectron., 2001, 16, 701-707. CrossrefGoogle Scholar

  • [28] Bossi A., Piletsky S.A., Piletska E.V., Righetti P.G., Turner A.P.F., Surface-grafted molecularly imprinted polymers for protein recognition, Anal. Chem., 2001, 73, 5281-5286. CrossrefGoogle Scholar

  • [29] Wang S., Xu Z.X., Fang G.Z., Zhang Y., Liu B., Zhu H.P., Development of a biomimetic enzyme-linked immunosorbent assay method for the determination of estrone in environmental water using novel molecularly imprinted films of controlled thickness as artificial antibodies, J. Agric. Food. Chem., 2009, 57, 4528-4534. CrossrefGoogle Scholar

  • [30] Fang G.Z., Lu J.P., Pan M.F., Li W., Ren L., Wang S., Substitution of antibody with molecularly imprinted film in enzyme-linked immunosorbent assay for determination of trace ractopamine in urine and pork samples, Food Anal. Methods, 2011, 4, 590-597. CrossrefGoogle Scholar

  • [31] Wang J.P., Tang W.W., Fang G.Z., Pan M.F., Wang S., Development of a biomimetic enzyme-linked immunosorbent assay method for the determination of methimazole in urine sample, J. Chin. Chem. Soc., 2011, 58, 463-469. CrossrefGoogle Scholar

  • [32] Meng L., Qiao X.G., Xu Z.X., Xin J.H., Wang L., Development of a direct competitive biomimetic enzyme-linked immunosorbent assay based on a hydrophilic molecularly imprinted membrane for the determination of trichlorfon residues in vegetables, Food Anal. Methods, 2012, 5, 1229- 1236. CrossrefGoogle Scholar

  • [33] Rachkov A., McNiven S., El’skaya A., Yano K., Karube I., Fluorescence detection of beta-estradiol using a molecularly imprinted polymer, Anal. Chim. Acta, 2000, 405, 23-29. Google Scholar

  • [34] Piletsky S.A., Piletskaya E.V., Elskaya A.V., Levi R., Yano K., Karube I., Opticai detection system for triazine based on molecularly imprinted polymers, Anal. Lett., 1997, 30, 445- 455. CrossrefGoogle Scholar

  • [35] Nicholls C., Karim K., Piletsky S., Saini S., Setford S., Displacement imprinted polymer receptor analysis (DIPRA) for chlorophenolic contaminants in drinking water and packaging materials, Biosens. Bioelectron., 2006, 21, 1171– 1177. CrossrefGoogle Scholar

  • [36] Haupt K., Mayes A.G., Mosbach K., Herbicide assay using an imprinted polymer-based system analogous to competitive fluoroimmunoassays, Anal. Chem., 1998, 70, 3936-3939. CrossrefGoogle Scholar

  • [37] Haupt K., Molecularly imprinted sorbent assays and the use of non-related probes, React. Funct. Polym., 1999, 41, 125- 131. CrossrefGoogle Scholar

  • [38] Benito-Pena E., Moreno-Bondi M.C., Aparicio S., Orellana G., Cederfur J., Kempe M., Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays, Anal. Chem., 2006, 78, 2019-2027. CrossrefGoogle Scholar

  • [39] Urraca J.L., Moreno-Bondi M.C., Orellana G., Hall A.J., Sellergren B., Molecularly imprinted polymers as antibody mimics in automated on-line fluorescent competitive assays, Anal. Chem., 2007, 79, 4915-4923. CrossrefGoogle Scholar

  • [40] Lu C.H., Zhou W.H., Han B., Yang H.H., Chen X., Wang X.R., Surface-imprinted core-shell nanoparticles for sorbent assays, Anal. Chem., 2007, 79, 5457-5461. CrossrefGoogle Scholar

  • [41] Hunt C.E., Pasetto P., Ansell R.J., Haupt K., A fluorescence polarisation molecular imprint sorbent assay for 2,4-D: a nonseparation pseudo-immunoassay, Chem. Commun., 2006, 16, 1754-1761. Google Scholar

  • [42] Levi R., McNiven S., Piletsky S.A., Cheong S.H., Yano K., Karube I., Optical detection of chloramphenicol using molecularly imprinted polymers, Anal. Chem., 1997, 69, 2017-2021. CrossrefGoogle Scholar

  • [43] McNiven S., Kato M., Levi R., Yano K., Karube I., Chloramphenicol sensor based on an in situ imprinted polymer, Anal. Chim. Acta, 1998, 365, 69-74. Google Scholar

  • [44] Suarez-Rodriguez J.L., Diaz-Garcia M.E., Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers, Biosens. Bioelectron., 2001, 16, 955-961. CrossrefGoogle Scholar

  • [45] Piletsky S.A., Terpetschnig E., Anderson H.S., Nichols I.A., Wolfbeis O.S., Application of non-specific fluorescent dyes for monitoring enantio-selective ligand binding to molecularly imprinted polymers, Fresenius J. Anal. Chem., 1999, 364, 512-516. Google Scholar

  • [46] Leute R.K., Uliman R.F., Goldstein A., Herzenberg L.A., Spin immunoassay technique for determination of morphine, Nature, 1972, 236, 93-94. Google Scholar

  • [47] Haga M., Itagaki H., Sugawara S., Okano T., Liposome immunosensors for theophylline, Biochem. Biophys. Res. Commun., 1980, 95, 187-192. CrossrefGoogle Scholar

  • [48] Barbas C.F., Burton D.R., Scott J.K., Phage display: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA, 2004. Google Scholar

  • [49] Baggiani C., Giovannoli C., Anfossi L., Passini C., Baravalle P., Giraudi G., A connection between the binding properties of imprinted and non-imprinted polymers: a change of perspective in molecular imprinting, J. Am. Chem. Soc., 2012, 134, 1513-1518. Google Scholar

  • [50] Guerreiro A.R., Chianella I., Piletska E., Whitcombe M.J., Piletsky S.A., Selection of imprinted nanoparticles by affinity chromatography, Biosens. Bioelectron., 2009, 24, 2740-2743. CrossrefGoogle Scholar

  • [51] Hoshino Y., Haberaecker W.W., Kodama T., Zeng Z., Okahata Y., Shea K.J., Affinity purification of multifunctional polymer nanoparticles, J. Am. Chem. Soc., 2010, 132, 13648–13650. Google Scholar

  • [52] Giraudi G., Baggiani C., Strategy for fractionating high affinity antibodies to steroid hormones by affinity chromatography, Analyst, 1996, 121, 939-44. Google Scholar

  • [53] Dirion B., Cobb Z., Schillinger E., Andersson L.I., Sellergren B., Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design, J. Am. Chem. Soc., 2003, 125, 15101-15109. Google Scholar

  • [54] Oral E., Peppas N.A., Hydrophilic molecularly imprinted poly(hydroxyethyl-methacrylate) polymers. J. Biomed. Mater. Res. A, 2006, 78A, 205-210. CrossrefGoogle Scholar

  • [55] Yang K.G., Berg M.M., Zhao C.S., Ye L., One-pot synthesis of hydrophilic molecularly imprinted nanoparticles, Macromolecules, 2009, 42, 8739-8746. CrossrefGoogle Scholar

  • [56] Pan G.Q., Zhang Y., Guo X.Z., Li C.X., Zhang H.Q., An efficient approach to obtaining water-compatible and stimuliresponsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens. Bioelectron., 2010, 26, 976-982. CrossrefGoogle Scholar

  • [57] Parisi O.I., Cirillo G., Curcio M., Puoci F., Iemma F., Spizzirri U.G., Picci N., Surface modifications of molecularly imprinted polymers for improved template recognition in water media, J. Polym. Res., 2010, 17, 355-362. CrossrefGoogle Scholar

  • [58] Pan G.Q., Ma Y.. Zhang Y.. Guo X.Z., Li C.X., Zhang H.Q., Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultrathin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization, Soft Matter, 2011, 7, 8428-8439. Google Scholar

  • [59] Lu, C.H., Zhou W.H., Han B., Yang H.H., Chen X., Wang X.R., Surface-imprinted core-shell nanoparticles for sorbent assays, Anal. Chem., 2007, 79, 5457-5461. CrossrefGoogle Scholar

  • [60] Balamurugan S., Spivak D.A., Molecular imprinting in monolayer surfaces, J. Mol. Recogn., 2011, 24, 915-929. CrossrefGoogle Scholar

  • [61] Halhalli M.R., Schillinger E., Aureliano C.S.A., Sellergren B., Thin walled imprinted polymer beads featuring both uniform and accessible binding sites, Chem. Mater., 2012, 24, 2909-2919. CrossrefGoogle Scholar

  • [62] Byrne M.E., Salian V., Molecular imprinting within hydrogels II: Progress and analysis of the field, Int. J. Pharm., 2008, 364, 188-212. Google Scholar

  • [63] Liu X.Y., Zhou T., Du Z.W., Wei Z., Zhang J.H., Recognition ability of temperature responsive molecularly imprinted polymer hydrogels, Soft Matter, 2011, 7, 1986-1993. Google Scholar

  • [64] Ran D., Wang Y.Z., Jia X.P., Nie C., Bovine serum albumin recognition via thermosensitive molecular imprinted macroporous hydrogels prepared at two different temperatures, Anal. Chim. Acta, 2012, 723, 45-53. Google Scholar

About the article

Received: 2013-04-09

Accepted: 2013-06-12

Published Online: 2013-08-13

Citation Information: Molecular Imprinting, Volume 1, Pages 41–54, ISSN (Online) 2084-8803, DOI: https://doi.org/10.2478/molim-2013-0002.

Export Citation

©2014 Claudio Baggiani et al.. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial No-Derivatives License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Libin Wan, Zhiliang Chen, Chuixiu Huang, and Xiantao Shen
TrAC Trends in Analytical Chemistry, 2017
Aysu Yarman, Katharina Jetzschmann, Bettina Neumann, Xiaorong Zhang, Ulla Wollenberger, Aude Cordin, Karsten Haupt, and Frieder Scheller
Chemosensors, 2017, Volume 5, Number 2, Page 11
Myriam Díaz-Álvarez, Esther Turiel, and Antonio Martín-Esteban
Journal of Chromatography A, 2016, Volume 1469, Page 1
Maria Panagiotopoulou, Yolanda Salinas, Selim Beyazit, Stephanie Kunath, Luminita Duma, Elise Prost, Andrew G. Mayes, Marina Resmini, Bernadette Tse Sum Bui, and Karsten Haupt
Angewandte Chemie, 2016, Volume 128, Number 29, Page 8384
Maria Panagiotopoulou, Yolanda Salinas, Selim Beyazit, Stephanie Kunath, Luminita Duma, Elise Prost, Andrew G. Mayes, Marina Resmini, Bernadette Tse Sum Bui, and Karsten Haupt
Angewandte Chemie International Edition, 2016, Volume 55, Number 29, Page 8244

Comments (0)

Please log in or register to comment.
Log in