Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematics of Quantum and Nano Technologies

formerly Nanoscale Systems: Mathematical Modeling, Theory and Applications

Editor-in-Chief: Sowa, Artur

Open Access
See all formats and pricing
More options …

Efficient simulation of unidirectional pulse propagation in high-contrast nonlinear nanowaveguides

Jonathan Andreasen
  • College of Optical Sciences, University of Arizona, 1630 E. University Blvd., 85741 Tucson, AZ, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslav Kolesik
  • College of Optical Sciences, University of Arizona, 1630 E. University Blvd., 85741 Tucson, AZ, United States of America
  • Department of Physics, Constantine the Philosopher University, 94974 Nitra, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-02 | DOI: https://doi.org/10.2478/nsmmt-2013-0010


This work demonstrates an improved method to simulate long-distance femtosecond pulse propagation in highcontrast nanowaveguides. Different from typical beam propagation methods, the foundational tool here is capable of simulating strong spatiotemporal waveform reshaping and extreme spectral dynamics. Meanwhile, the ability to fully capture effects due to index contrast in the transverse direction is retained, without requiring a decomposition of the electric field in terms of waveguide modes. These simulations can be computationally expensive, however, so cost is reduced in the improved method by considering only the waveguide core. Fields in the cladding are then properly accounted for through a boundary condition suitable for the case of total internal reflection.

Keywords: Nanophotonics; optical waveguides; nonlinear optics; computational efficiency; numerical simulation

PACS: 02.60.-x; 42.25.Bs; 42.65.Re; 42.65.Jx

MSC: 78A60; 78A40; 78M25; 34A34

  • [1] J. Andreasen and M. Kolesik, Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations. Phys. Rev. E, 86(3), 036706, (2012). Web of ScienceGoogle Scholar

  • [2] J. Andreasen and M. Kolesik, Midinfrared femtosecond laser pulse filamentation in hollow waveguides: A comparison of simulation methods. Phys. Rev. E, 87(5), 053303, (2013). Web of ScienceGoogle Scholar

  • [3] C. L. Arnold, S. Akturk, M. Franco, A. Couairon, and A. Mysyrowicz, Compression of ultrashort laser pulses in planar hollow waveguides: a stability analysis. Opt. Express, 17(13), 11122–11129, (2009). CrossrefWeb of ScienceGoogle Scholar

  • [4] C. L. Arnold, B. Zhou, S. Akturk, S. Chen, A. Couairon, and A. Mysyrowicz, Pulse compression with planar hollow waveguides: a pathway towards relativistic intensity with table-top lasers. New J. Phys., 12(7), 073015, (2010). Google Scholar

  • [5] L Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Ultrashort filaments of light in weakly ionized optically transparent media. Rep. Prog. Phys., 70(10), 1633–1713, (2007). Web of ScienceGoogle Scholar

  • [6] L. Caspani, D. Duchesne, K. Dolgaleva, S. J. Wagner, M. Ferrera, L. Razzari, et al., Optical frequency conversion in integrated devices. J. Opt. Soc. Am. B, 28(12), A67–A82, (2011). CrossrefGoogle Scholar

  • [7] S. L. Chin, Femtosecond Laser Filamentation. Springer, New York, (2009). Google Scholar

  • [8] A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep., 441(2-4), 47–189, (2007). Google Scholar

  • [9] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. J. Ramírez-Góngora, and M. Kolesik, Practitioner’s guide to laser pulse propagation models and simulation. Eur. Phys. J. Special Topics, 199(1), 5–76, (2011). Google Scholar

  • [10] C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments. Phys. Plasmas, 8(7), 3445–3456, (2001). Google Scholar

  • [11] D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, et al., Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt. Express, 18(2), 923–930, (2010). CrossrefWeb of ScienceGoogle Scholar

  • [12] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Broad-band optical parametric gain on a silicon photonic chip. Nature, 441(7096), 960–963, (2006). Google Scholar

  • [13] M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, Nonlinear optics in photonic nanowires. Opt. Express, 16 (2), 1300–1320, Jan (2008). Google Scholar

  • [14] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express, 15(20), 12949–12958, (2008). Web of ScienceGoogle Scholar

  • [15] X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, Supercontinuum generation in the midinfrared from a dispersion-engineered As2S3 glass rib waveguide. Opt. Lett., 37(18), 3870–3872, (2012). Google Scholar

  • [16] J. H. Greene and A. Taflove, General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express, 14(18), 8305–8310, (2006). CrossrefGoogle Scholar

  • [17] R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett., 37(10), 1685–1687, (2012). Web of ScienceGoogle Scholar

  • [18] R. J. Hawkins, Propagation properties of single-mode dielectric waveguide structures: a path integral approach. Appl. Opt., 26(7), 1183–1188, (1987). CrossrefGoogle Scholar

  • [19] S. T. Hendow and S. A. Shakir, Recursive numerical solution for nonlinear wave propagation in fibers and cylindrically symmetric systems. Appl. Opt., 25(11), 1759–1764, (1986). Google Scholar

  • [20] P. Kinsler, Optical pulse propagation with minimal approximations. Phys. Rev. A, 81(1), 013819, (2010). Web of ScienceGoogle Scholar

  • [21] P. Kinsler, Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses. Phys. Rev. A, 81(2), 023808, (2010). CrossrefWeb of ScienceGoogle Scholar

  • [22] M. Kolesik and J. V. Moloney, Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E, 70(3), 036604, (2004). Google Scholar

  • [23] M. Kolesik, J. V. Moloney, and M. Mlejnek, Unidirectional optical pulse propagation equation. Phys. Rev. Lett., 89 (28), 283902, (2002). Google Scholar

  • [24] M. Kolesik, P. T. Whalen, and J. V. Moloney, Theory and simulation of ultrafast intense pulse propagation in extended media. IEEE J. Sel. Top. Quantum Electron., 18(1), 494–506, (2012). Web of ScienceCrossrefGoogle Scholar

  • [25] H. M. Masoudi and M. S. Akond, Efficient iterative time-domain beam propagation methods for ultra short pulse propagation: Analysis and assessment. J. Lightwave Technol., 29(16), 2475–2481, (2011). Google Scholar

  • [26] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36(17), 3398–3400, (2011). Web of ScienceGoogle Scholar

  • [27] J. V. Roey, J. van der Donk, and P. E. Lagasse, Beam-propagation method: analysis and assessment. J. Opt. Soc. Am., 71,803–810, (1981). Google Scholar

  • [28] K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, et al., Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express, 21(1), 1335–1343, (2013). Web of ScienceCrossrefGoogle Scholar

  • [29] J. Shibayama, M. Muraki, J. Yamauchi, and H. Nakano, Comparative study of several time-domain methods for optical waveguide analyses. J. Lightwave Technol., 23(7), 2285, (2005). CrossrefGoogle Scholar

  • [30] G. Tempea and T. Brabec, Theory of self-focusing in a hollow waveguide. Opt. Lett., 23(10), 762–764, (1998). Google Scholar

  • [31] D. Yevick and B. Hermansson, New formulations of the matrix beam propagation method: Application to rib waveguides. IEEE J. Quantum Electron., 25(2), 221–229, (1989). CrossrefGoogle Scholar

  • [32] L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. Opt. Express, 19(12), 11584–11590, (2011). Web of ScienceGoogle Scholar

About the article

Received: 2013-06-28

Revised: 2013-08-12

Accepted: 2013-08-12

Published Online: 2013-09-02

Published in Print: 2013-01-01

Citation Information: Mathematics of Quantum Technologies, Volume 2, Issue 1, Pages 157–165, ISSN (Online) 2544-1477, DOI: https://doi.org/10.2478/nsmmt-2013-0010.

Export Citation

©2013 Versita Sp. z o.o.. This content is open access.

Comments (0)

Please log in or register to comment.
Log in