Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia


IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 57, Issue 2

Issues

Companion d-algebras

P. Allen / Hee Kim / J. Neggers
Published Online: 2007-04-01 | DOI: https://doi.org/10.2478/s12175-007-0001-z

Abstract

In this paper we develop a theory of companion d-algebras in sufficient detail to demonstrate considerable parallelism with the theory of BCK-algebras as well as obtaining a collection of results of a novel type. Included among the latter are results on certain natural posets associated with companion d-algebras as well as constructions on Bin(X), the collection of binary operations on the set X, which permit construction of new companion d-algebras from companion d-algebras X also in natural ways.

MSC: 06F35

Keywords: BCK-algebra; d/d*-algebra; companion; BCK/d-ideal; ⊙-subalgebra; dsu condition; complete; transitivity; pogroupoid

  • [1] DVUREČENSKIJ, A.— GRAZIANO, M. G.: Commutative BCK-algebras and lattice ordered groups, Math. Japon. 32 (1999), 227–246. Google Scholar

  • [2] FONT, J. M.— RODRÍGEZ, A. J.— TORRENS, A.: Wajsberg algebras, Stochastica 8 (1984), 5–31. Google Scholar

  • [3] HU, Q. P.— LI, X.: On BCH-algebras, Math. Seminar Notes 11 (1983), 313–320. Google Scholar

  • [4] HU, Q. P.— LI, X.: On proper BCH-algebras, Math. Japon. 30 (1985), 659–661. Google Scholar

  • [5] HOO, C. S.: Unitary extensions of MV and BCK-algebras, Math. Japon. 37 (1992), 683–686. Google Scholar

  • [6] HU, Q.:BCI-algebras, Shaanxi Scientific and Technological Press, Xian, 1984. (Chinese) Google Scholar

  • [7] ISÉKI, K.: On BCI-algebras, Math. Seminar Notes 8 (1980), 125–130. Google Scholar

  • [8] ISÉKI, K.— TANAKA, S.: An introduction to theory of BCK-algebras, Math. Japon. 23 (1978), 1–26. Google Scholar

  • [9] JUN, Y. B.— NEGGERS, J.— KIM, H. S.: Fuzzy d-ideals of d-algebras, J. Fuzzy Math. 8 (2000), 123–130. Google Scholar

  • [10] LEE, Y. C.— KIM, H. S.: ON d-subalgebras of d-transitive d*-algebras, Math. Slovaca 49 (1999), 27–33. Google Scholar

  • [11] MENG, J.: Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup Forum 50 (1995), 89–96. http://dx.doi.org/10.1007/BF02573506CrossrefGoogle Scholar

  • [12] MENG, J.— JUN, Y. B.: BCK-algebras, Kyung Moon Sa, Seoul, 1994. Google Scholar

  • [13] MUNDICI, D.: MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon. 31 (1986), 889–894. Google Scholar

  • [14] NEGGERS, J.— JUN, Y. B.— KIM, H. S.: On d-ideals in d-algebras, Math. Slovaca 49 (1999), 243–251. Google Scholar

  • [15] NEGGERS, J.: Partially ordered sets and pogroupoids, Kyungpook Math. J. 16 (1976), 7–20. Google Scholar

  • [16] NEGGERS, J.— KIM, H. S.: Basic Posets, World Scientific Pub. Co., Singapore, 1998. Google Scholar

  • [17] NEGGERS, J.— KIM, H. S.: Modular posets and semigroups, Semigroup Forum 53 (1996), 57–62. http://dx.doi.org/10.1007/BF02574120CrossrefGoogle Scholar

  • [18] NEGGERS, J.— KIM, H. S.: On d-algebras, Math. Slovaca 49 (1999), 19–26. Google Scholar

About the article

Published Online: 2007-04-01

Published in Print: 2007-04-01


Citation Information: Mathematica Slovaca, Volume 57, Issue 2, Pages 93–106, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.2478/s12175-007-0001-z.

Export Citation

© 2007 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Feng Feng, Hee Kim, and Joseph Neggers
Mathematics, 2018, Volume 6, Number 11, Page 235
[2]
Hee Kim, J. Neggers, and Sun Ahn
Symmetry, 2018, Volume 10, Number 7, Page 297
[3]
Yong Lin Liu, Hee Sik Kim, and Joseph Neggers
Journal of Intelligent & Fuzzy Systems, 2017, Volume 33, Number 3, Page 1553
[4]
Young Joo Seo and Young Hee Kim
SpringerPlus, 2016, Volume 5, Number 1
[5]
Sun Shin Ahn and Jung Mi Ko
Communications of the Korean Mathematical Society, 2013, Volume 28, Number 4, Page 709
[6]
Keum Sook So and Young Hee Kim
Journal of applied mathematics & informatics, 2013, Volume 31, Number 3_4, Page 559
[7]
Hee Sik Kim, J. Neggers, and Keum Sook So
Journal of Applied Mathematics, 2012, Volume 2012, Page 1
[8]
Sun-Shin Ahn and Gyeong-Ho Han
Honam Mathematical Journal, 2009, Volume 31, Number 4, Page 489
[9]
Sun-Shin Ahn and Keum-Sook So
Honam Mathematical Journal, 2008, Volume 30, Number 4, Page 645
[10]
Kyung Joon Cha, Hee Sik Kim, and J. Neggers
Computers & Mathematics with Applications, 2011, Volume 62, Number 8, Page 2988
[11]
Paul J. Allen, Hee-Sik Kim, and Joseph Neggers
Bulletin of the Korean Mathematical Society, 2011, Volume 48, Number 2, Page 315
[12]
Keum Sook So
International Journal of Mathematics and Mathematical Sciences, 2011, Volume 2011, Page 1
[13]
Jeong Han, Hee Kim, and J. Neggers
Mathematica Slovaca, 2010, Volume 60, Number 3
[14]
Paul J. Allen
Communications of the Korean Mathematical Society, 2009, Volume 24, Number 3, Page 361

Comments (0)

Please log in or register to comment.
Log in