Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

6 Issues per year


IMPACT FACTOR 2017: 0.314
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.46

SCImago Journal Rank (SJR) 2017: 0.339
Source Normalized Impact per Paper (SNIP) 2017: 0.845

Mathematical Citation Quotient (MCQ) 2017: 0.26

Online
ISSN
1337-2211
See all formats and pricing
More options …
Volume 59, Issue 4

Issues

Ideals and atoms of BZ-algebras

Wiesław Dudek / Xiaohong Zhang / Yongquan Wang
Published Online: 2009-07-29 | DOI: https://doi.org/10.2478/s12175-009-0135-2

Abstract

Ideals and atoms are studied by various authors from different point of views. In different algebras there are studied different ideals, but obtained results are similar. Below we present a new method of study of ideals in BZ-algebras. Using this method we describe the connection between ideals of various types.

MSC: Primary 03G25; 06F35

Keywords: BZ-algebra; BZ-ideal; closed ideal; (*)-ideal; strong ideal; regular ideal; atom

  • [1] BHATTI, S. A.— ZHANG, X. H.: Strong ideals, associative ideals and p-ideals in BCI-algebras, Punjab Univ. J. Math. 27 (1994), 113–120. Google Scholar

  • [2] BUNDER, W. M.: BCK and related algebras and their corresponding logics, J. Non-Classical Logic 7 (1983), 15–24. Google Scholar

  • [3] CHAJDA, I.— HALAŠ, R.: Congruences and ideals in Hilbert algebras, Kyungpook Math. J. 39 (1999), 429–432. Google Scholar

  • [4] CHEN, Z. M.— WANG, X. H.: Closed ideals and congruences on BCI-algebras, Kobe J. Math. 8 (1991), 1–9. Google Scholar

  • [5] CHO, J. R.— KIM, H. S.: On B-algebras and quasigroups, Quasigroups Related Systems 8 (2001), 1–6. Google Scholar

  • [6] DUDEK, W. A.: On some BCI-algebras with the condition (S), Math. Japon. 31 (1984), 25–29. Google Scholar

  • [7] DUDEK, W. A.: On medial BCI-algebras, Prace Naukowe WSP w Czestochowie, Ser. Matematyka 1 (1987), 25–33. Google Scholar

  • [8] DUDEK, W. A.: On group-like BCI-algebras, Demonstratio Math. 21 (1988), 369–376. Google Scholar

  • [9] DUDEK, W. A.: On BCC-algebras, Logique et Anal. (N.S.) 129–130 (1990), 103–111. Google Scholar

  • [10] DUDEK, W. A.: On proper BCC-algebras, Bull. Inst. Math. Acad. Sci. 20 (1992), 137–150. Google Scholar

  • [11] DUDEK, W. A.: Remark on the axioms system of BCI-algebras, Prace Naukowe WSP w Czestochowie, Ser. Matematyka 2 (1960), 46–61. Google Scholar

  • [12] DUDEK, W. A.: A new characterization of ideals in BCC-algebras, Novi Sad J. Math. 29 (1999), 139–145. Google Scholar

  • [13] DUDEK, W. A.— JUN, Y. B.: Quasi p-ideals of quasi BCI-algebras, Quasigroups Related Systems 11 (2004), 25–38. Google Scholar

  • [14] DUDEK, W. A.— JUN, Y. B.— STOJAKOVIĆ, Z.: On fuzzy ideals in BCC-algebras, Fuzzy Sets and Systems 123 (2001), 251–258. http://dx.doi.org/10.1016/S0165-0114(00)00058-0Web of ScienceCrossrefGoogle Scholar

  • [15] DUDEK, W. A.— THOMYS, J.: On decompositions of BCH-algebras, Math. Japon. 35 (1990), 1131–1138. Google Scholar

  • [16] DUDEK, W. A.— ZHANG, X. H.: On atoms in BCC-algebras, Discuss. Math. Algebra Stochastic Methods 15 (1995), 81–85. Google Scholar

  • [17] DUDEK, W. A.— ZHANG, X. H.: On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 40(123) (1998), 21–29. http://dx.doi.org/10.1023/A:1022407325810CrossrefGoogle Scholar

  • [18] HUANG, W. P.: On the p-semisimple part in BCI-algebras, Math. Japon. 37 (1992), 159–161. Google Scholar

  • [19] ISÉKI, K.: An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26–29. Google Scholar

  • [20] KHALID, H. M.— AHMAD, B.: Fuzzy H-ideals in BCI-algebras, Fuzzy Sets and Systems 101 (1999), 153–158. http://dx.doi.org/10.1016/S0165-0114(97)00042-0CrossrefGoogle Scholar

  • [21] KOMORI, Y.: The variety generated by BCC-algebras is finitely based, Rep. Fac. Sci. Shizuoka Univ. 17 (1983), 13–16. Google Scholar

  • [22] KOMORI, Y.: The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391–394. Google Scholar

  • [23] KOMORI, Y.: On Komori algebras, Bull. Sect. Logic Univ. Łódź 30 (2001), 67–70. Google Scholar

  • [24] LYCZKOWSKA, A.: Fuzzy QA-ideals in weak BCC-algebras, Demonstratio Math. 34 (2001), 513–524. Google Scholar

  • [25] MENG, J.— ABUJABAL, H. A. S.: On closed ideals in BCI-algebras, Math. Japon. 44 (1996), 499–505. Google Scholar

  • [26] MENG, J.— JUN, Y. B.— ROH, E. H.: The role of B(X) and L(X) in the ideal theory of BCI-algebras, Indian J. Pure Appl. Math. 28 (1997), 741–752. Google Scholar

  • [27] ROH, E. H.— KIM, S. Y.: On difference algebras, Kyungpook Math. J. 43 (2003), 407–414. Google Scholar

  • [28] XU, J. M.— ZHANG, X. H.: On anti-grouped ideals in BZ-algebras, Pure Appl. Math. 14 (1998), 101–102. Google Scholar

  • [29] YE, R. F.: On BZ-algebras. In: Selected papers on BCI/BCK-algebras and Computer Logic, Shanghai Jiaotong Univ., 1991, pp. 21–24 (Chinese). Google Scholar

  • [30] YE, R. F.— ZHANG, X. H.: On ideals in BZ-algebras and its homomorphism theorems, J. East China Univ. Sci. Technology 19 (1993), 775–778 (Chinese). Google Scholar

  • [31] ZHANG, X. H.: T-ideal of a BCI-algebra, J. Hunan Educational Inst. 12 (1994), 26–28. Google Scholar

  • [32] ZHANG, X. H.— HAO, J.— BHATTI, S. A.: On p-ideal of a BCI-algebra, Punjab Univ. J. Math. 27 (1994), 121–128. Google Scholar

  • [33] ZHANG, X. H.— JUN, Y. B.: The role of T(X) in the ideal theory of BCI-algebras, Bull. Korean Math. Soc. 34 (1997), 199–204. Google Scholar

  • [34] ZHANG, X. H.— LING, R. G.: Associative ideal of BCI-algebras, J. Huzhou Teachers College 5 (1989), 49–51 (Chinese). Google Scholar

  • [35] ZHANG, X. H.— LIU, W. H.: Two notes on ideals of BZ-algebras, J. Northwest Univ. Suppl. 24 (1994), 103–104 (Chinese). Google Scholar

  • [36] ZHANG, X. H.— YE, R. F.: BZ-algebra and group, J. Math. Phys. Sci. 29 (1995), 223–233. Google Scholar

  • [37] ZHANG, X. H.— YUE, Z. C.— HU, W. B.: On fuzzy BCC-ideals, Sci. Math. Jpn. 54 (2001), 349–353. Google Scholar

  • [38] ZHANG, X. H.— WANG, Y. Q.— DUDEK, W. A.: T-ideals in BZ-algebras and BZ-type BZ-algebras, Indian J. Pure Appl. Math. 34 (2003), 1559–1570. Google Scholar

  • [39] ZHOU, D. X.: GB-algebras and its primary properties, J. Southwest China Normal Univ. 1 (1987), 23–26 (Chinese). Google Scholar

About the article

Published Online: 2009-07-29

Published in Print: 2009-08-01


Citation Information: Mathematica Slovaca, Volume 59, Issue 4, Pages 387–404, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.2478/s12175-009-0135-2.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiaohong Zhang, Choonkil Park, and Supeng Wu
Journal of Intelligent & Fuzzy Systems, 2018, Volume 34, Number 1, Page 559
[2]
Janus Thomys and Xiaohong Zhang
The Scientific World Journal, 2013, Volume 2013, Page 1
[3]
Xiaohong Zhang
Mathematica Slovaca, 2013, Volume 63, Number 3
[4]
Wieslaw A. Dudek and Janus Thomys
International Journal of Computer Mathematics, 2012, Volume 89, Number 12, Page 1596
[5]
Wieslaw A. Dudek
International Journal of Computer Mathematics, 2011, Volume 88, Number 14, Page 2915

Comments (0)

Please log in or register to comment.
Log in