Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematica Slovaca

Editor-in-Chief: Pulmannová, Sylvia

IMPACT FACTOR 2018: 0.490

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.279
Source Normalized Impact per Paper (SNIP) 2018: 0.627

Mathematical Citation Quotient (MCQ) 2017: 0.26

See all formats and pricing
More options …
Volume 59, Issue 5


Data driven rank statistics in change point analysis

Jaromír Antoch / Marie Hušková
Published Online: 2009-10-27 | DOI: https://doi.org/10.2478/s12175-009-0147-y


The paper deals a class of rank based procedures for detection of changes with adaptively chosen scores. This is a certain continuation of the paper Antoch et al (2008). The limit behavior of the test procedures is studied both under the null as well as under a general class of alternatives. Accompanying simulation study focuses on various alternatives which are often met in practice.

MSC: Primary 62G10, 62E20

Keywords: data driven procedures; rank statistics; change point

  • [1] Antoch, J.— Hušková, M.— Janic, A.— Ledwina, T.: Data driven rank test for the change point problem, Metrika 68 (2008), 1–15. http://dx.doi.org/10.1007/s00184-007-0139-2Web of ScienceCrossrefGoogle Scholar

  • [2] Csörgő, M.— Horváth, L.: Nonparametric methods for change point problems. In: Handbook of Statistics 7 (P. R. Krishnaiah, C. R. Rao, eds.), North Holland, Amsterdam, 1988, pp. 403–425. Google Scholar

  • [3] Csörgő, M.— Horváth, L.: Limit Theorems in Change-Point Analysis, J. Wiley, New York, 1997. Google Scholar

  • [4] Hájek, J.: Asymptotic sufficiency of the vector of ranks in the Bahadur sense, Ann. Statist. 2 (1974), 75–83. http://dx.doi.org/10.1214/aos/1176342614CrossrefGoogle Scholar

  • [5] Hájek, J.— Šidák, Z.: Theory of Rank Tests, Academia, Prague, 1967. Google Scholar

  • [6] Hušková, M.: Limit theorems for rank statistics, Statist. Probab. Lett. 32 (1997), 45–55. http://dx.doi.org/10.1016/S0167-7152(96)00055-7CrossrefGoogle Scholar

  • [7] Hušková, M.— Sen, P. K.: Nonparametric tests for shift and change in regression at an unknown time point. In: Statistical Analysis and Forecasting of Economic Structural Change (P. Hackl, ed.), Springer Verlag, Berlin, 1989, pp. 71–85. Google Scholar

  • [8] Janic-Wróblewska, A.— Ledwina, T.: Data driven rank test for two-sample problem. Technical Report No. 3/97, Institute of Mathematics, Wrocław University of Technology, 1997. Google Scholar

  • [9] Janic-Wróblewska, A.— Ledwina, T.: Data driven rank test for two-sample problem, Scand. J. Statist. 27 (2000), 281–297. http://dx.doi.org/10.1111/1467-9469.00189CrossrefGoogle Scholar

  • [10] Lombard, F.: Asymptotic distributions of rank statistics in the change-point problem, South African Statist. J. 17 (1983), 83–105. Google Scholar

  • [11] Praagman, J.: Efficiency of Change-Point Tests. Dissertation, University of Eindhoven, The Netherlands, 1986. Google Scholar

  • [12] Yao, Y-C.: On asymptotic behavior of a class of nonparametric tests, Statist. Probab. Lett. 9 (1990), 173–177. http://dx.doi.org/10.1016/0167-7152(92)90013-UCrossrefGoogle Scholar

About the article

Published Online: 2009-10-27

Published in Print: 2009-10-01

Citation Information: Mathematica Slovaca, Volume 59, Issue 5, Pages 545–564, ISSN (Online) 1337-2211, ISSN (Print) 0139-9918, DOI: https://doi.org/10.2478/s12175-009-0147-y.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in